

Topology-Driven Learning for Images: Applications and Acceleration

Fan Wang May 16, 2024

Committee members:

Prof. Chao Chen Prof. Dimitris Samaras Prof. Rezaul A. Chowdhury Prof. Haibin Ling **External committee member:**

Prof. Hubert Wagner

Contents

- 1. Introduction to topological data analysis and persistent homology.
- 2. Applications of persistent homology:
	- Topology-aware GAN
	- Topological biomarker for predicting breast cancer treatment response
- 3. Persistent homology computations using GPUs:
	- GPU computation of the Euler Characteristic Curve
	- GPU computation of persistent homology

Updates from Prelim

- 1. GPU Computation of the Euler Characteristic Curve for Imaging Data
	- Journal of Computational Geometry Vol 14
- 2. TopoTxR: A topology-guided deep convolutional network for breast parenchyma learning on DCE-MRIs
	- Medical Image Analysis in revision
- 3. GPU-Accelerated Computation of Persistent Homology for Image Data
	- TPAMI in submission
	- A significant contribution developed over three years
	- More than 14,000 lines of C++ codes

Publications

- **1. Fan Wang**, et al. "TopoGAN: A Topology-Aware Generative Adversarial Network", ECCV 2020, Oral
- **2. Fan Wang**, et al. "TopoTxR: A Topological Biomarker for Predicting Treatment Response in Breast Cancer", IPMI 2021
- **3. Fan Wang**, et al. "GPU Computation of the Euler Characteristic Curve for Imaging Data", SoCG 2022
- **4. Fan Wang**, et al. "GPU Computation of the Euler Characteristic Curve for Imaging Data", JoCG 2023
- **5. Fan Wang**, et al. "Hierarchical image link selection scheme for duplicate structure disambiguation", BMVC 2018
- **6. Fan Wang**, et al. "Hardware Acceleration of Persistent Homology Computation", MICCAI Workshop 2019
- **7. Fan Wang**, et al. "TopoTxR: A topology-guided deep convolutional network for breast parenchyma learning on DCE-MRIs", MedIA in revision
- **8. Fan Wang**, et al. "GPU-Accelerated Computation of Persistent Homology for Image Data", TPAMI in submission

Contents

- 1. Introduction to topological data analysis and persistent homology.
- 2. Applications of persistent homology:
	- Topology-aware GAN
	- Topological biomarker for predicting breast cancer treatment response
- 3. Persistent homology computations using GPUs:
	- GPU computation of the Euler Characteristic Curve
	- GPU computation of persistent homology

What is Topological Data Analysis (TDA)?

Topological data analysis (TDA) is an approach to analyze data using techniques from topology. These techniques extract topological features from data.

Image from [Persistent homology analysis of biomolecular data]

TDA in Biomedical Imaging

• Complex biomedical systems with rich topology and geometry

Challenge: Structure Extraction from Images

- Thresholding does not work
- Smart/adaptive thresholding

Issue: Requires a clean input!

Scopy Image: Neuron Reconstruction [Wang et al. '18]

Cardiac CT image (3D) Left Ventricle Reconstruction [IPMI'13,'17, IJCAI'19]

Persistent homology: a robust way to detect topology

- Input: a (density) function, f
- · Output:

topological structures & their persistence

• Def: given threshold t, the superlevel set $f^{-1}[t, +\infty) := \{x | f(x) \ge t\}$

9

Persistent homology (cont'd)

- the true structures are hidden in superlevel sets
- consider the whole stack of superlevel sets
- identify structures that often appear (high persistence)
- Output: persistence diagram dots representing all structures

Diagram

Persistent homology (cont'd)

Challenges

- 1. How to incorporate topology into deep learning to improve performance:
	- a) Generative model: TopoGAN
	- Fullyb) Classification model: TopoTxR connected Convolutional layer Convolutional layer 1 layer 2 **Topology** 12 36 Max pooling layer 2 Max pooling Output layer 1 layers Input layer
- 2. Computation of persistent homology is heavy. Hardware accelerators like GPU are inevitable.

Contents

- 1. Introduction to topological data analysis and persistent homology.
- 2. Applications of persistent homology:
	- TopoGAN: A topology-aware generative adversarial network
		- Topological biomarker for predicting breast cancer treatment response
- 3. Persistent homology computations using GPUs:
	- GPU computation of the Euler Characteristic Curve
	- GPU computation of persistent homology

Generative Adversarial Network (GAN)

Applications

-
-
- Generate human faces Generate realistic photographs Image-to-image translation
- Super resolution Photo inpainting The Many more ...
- -

loops

loops **15**

Motivation

TopoGAN Framework

Topological GAN loss

Persistent Homology

5 loops

 $\pmb{0}$

Input mask

Distance transform (DT)

Landscape view of DT

Persistent Diagram

Distance between Distributions of Diagrams

[1] Hu, X., Li, F., Samaras, D., Chen, C.: Topology-preserving deep image segmentation. NeurIPS 2019. **20**

Distance between Persistence Diagrams

Fixing Incomplete Loops

Topology-Aware GAN Evaluation Metrics

1. Betti score

2. Maximum mean discrepancy (MMD)

Qualitative Results

TopoGAN is evaluated on five datasets: **CREMI**, **ISBI12**, **Google Maps**, **CMP Façade Database**, and **Retina** dataset. We show results of only **CREMI** and **Google Maps** here due to time constraint.

Qualitative Results

The texture images in the last row are generated with a pretrained pix2pix network which takes masks as inputs and produces corresponding texture images.

Quantitative Results

lower score = better quality

Contents

- 1. Introduction to topological data analysis and persistent homology.
- 2. Applications of persistent homology:
	- TopoGAN: A topology-aware generative adversarial network
	- TopoTxR: A Topological Biomarker for Predicting Treatment Response in Breast Cancer
- 3. Persistent homology computations using GPUs:
	- GPU computation of the Euler Characteristic Curve
	- GPU computation of persistent homology

Motivation

Radiomics approach

Hand-crafted features [can't model complex tissue structures**]**

CNN

Learned features [Completely data-driven]

TopoTxR

Bridges the two extremes

[Directs the attention of CNN to the smaller set of clinically relevant voxels for training**]**

TopoTxR Framework

of the extracted topological structures and their vicinity regions are visible.

topological structures.

TopoTxR Results

Dataset: ISPY-1 post–contrast DCE-MRI dataset with 47 cases achieving response (pCR), and 115 non-pCR

higher score = better quality

Comparisons of TopoTxR against baseline methods.

Fig: Qualitative comparison of patients with and without pCR.

Structures are sparse for the case exhibiting pCR and are relatively dense for the nonpCR case.

New Idea: Topology-Guided Spatial Attention

Train a spatial attention module to extract topological structures.

VICTRE Phantom Dataset

Are topological structures good approximations of breast tissues?

Red: 1-voxel width breast outline

Blue: extracted topological structures

White: ground truth breast tissues.

Contents

- 1. Introduction to topological data analysis and persistent homology.
- 2. Applications of persistent homology:
	- TopoGAN: A topology-aware generative adversarial network
	- TopoTxR: A Topological Biomarker for Predicting Treatment Response in Breast Cancer
- 3. Persistent homology computations using GPUs:
	- GPU computation of the Euler Characteristic Curve
	- GPU computation of persistent homology

Euler Characteristic

Simpler but still expressive topological descriptor.

Euler characteristic was introduced as a topological invariant that describes the shape of polytopes.

The Euler characteristic χ is defined as:

 $\chi = V - E + F$

Table from Wikipedia **34**

Euler Characteristic Curve Example

Image from [Streaming Algorithm for Euler Characteristic Curves of Multidimensional Images]

ECC as a Topological Descriptor

$$
\chi(K) = \beta_0 - \beta_1 + \beta_2 - \beta_3 + \cdots
$$

Typical workflow of CPU

One CPU thread does:

Workflow of GPU

Each GPU thread does simultaneously:

- Compute a value.
- Write to a bin in a local histogram.

ECC Computation – Abstracted Version

Euler Characteristic

Each pixel computes the Euler Characteristic by comparing to its 8 neighbors

Convert VCEC to ECC

$$
ECC_i = \sum_{j=0}^{i} VCEC_j
$$

Prefix sum in GPU

ECC Computation – Parallelism

VCEC (Vector of Changes in Euler Characteristic)

- Independence among pixels. Motivation for a parallel algorithm.
- ECC is like histogram computation!

Problem in GPU Histogram

The output location for each element is not known prior to reading its value.

GPU ECC Framework

Texture memory

Motivation:

- Spatial locality.
- Multiple reading.

Limited GPU Memory and Streaming

CUDA Streams

Serial:

Asynchronous:

GPU ECC Results

For 3D images of size 512^3 , computing ECC:

 \blacktriangleright takes 1/30 second on a RTX 2070 GPU,

In general:

- \blacktriangleright unlimited image size due to streaming,
- ▶ 4 billion voxels per second throughput,
- \blacktriangleright yields a small and readily vectorized topological descriptor.

New Idea: Warp-Level Primitives

New Idea: Hierarchical Accumulation

Level 2 Global Histogram **50**

Contents

- 1. Introduction to topological data analysis and persistent homology.
- 2. Applications of persistent homology:
	- TopoGAN: A topology-aware generative adversarial network
	- TopoTxR: A Topological Biomarker for Predicting Treatment Response in Breast Cancer
- 3. Persistent homology computations using GPUs:
	- GPU computation of the Euler Characteristic Curve
	- GPU-Accelerated Computation of Persistent Homology for Image Data

Efficiency of Persistence Computation

For 3D image of size 512^3 (130 M voxels), computing persistence using state-ofthe-art software (e.g. CubicalRipser):

- takes several minutes,
- tens of gigabytes of memory.

Impediments for wider adoption and seamless integration with existing pipelines (machine learning, simulations…):

- Relatively high running time.
- High, unpredictable memory usage.
- Lack of GPU implementations on image data

Pipeline of Persistent Homology Computation

Topological Sort

Topological sort of a directed graph is an ordering of the vertices such that for every directed edge *uv* from vertex *u* to *v*, *u* comes before *v* in the ordering.

GPU topological sort:

- Very few literature - No open-source codes - Very challenging

Relax the problem:

Khan's Algorithm

- 1. Put nodes with no incoming edges into *S*
- 2. Take a node from *S*, delete all its outgoing edges, and put it into *L*.
- 3. Repeat from Step 1.

Proposed Algorithm – Intuitions

- Incoming edges only from four neighbors.
- 0 indegree nodes do not have dependencies.

Proposed Algorithm – Intuitions Cont.

- 1 indegree nodes appear after their only parent in the ordering.

Proposed Algorithm – Intuitions Cont.

- What about 2 indegree nodes?

- Node 1 has 2 incoming edges from Node 0 and Node 6.
- Node 0 depends on Node 6, so Node 1 only depends on Node 0.

- Node 7 depends on Node 1.
- Node 11 depends on Node 5.
- Node 7 depends on Node 11.

Proposed Algorithm – Intuitions Cont.

- Can we always deal with 2 indegree nodes? No

- Node 6 has 2 incoming edges from Node 1 and 5.
- But there is no dependency between Node 1 and 5 .

- Node 1 has 2 incoming edges from Node 0 and 2.
- But no dependency can be determined between Node 0 and 2 in a local neighborhood.

Algorithm Comparisons

Khan's algorithm

Algorithm Comparisons – Cont.

Parallel topological sort

Algorithm Comparisons – Cont.

GPU Khan's algorithm

Algorithm Comparisons – Cont.

Parallel topological sort

Future Works

- 1. GPU Topology computes only persistent homology.
	- Extract topological structures and corresponding geometries from the Morse complex.
- 2. GPU boundary matrix reduction.
	- Like Gaussian elimination, boundary matrix reduction is highly sequential and challenging to parallelize.

Summary of Important Contributions

- 1. A topological biomarker for treatment response prediction in breast cancer.
- 2. A topology-aware generative adversarial network ECCV Oral
- 3. GPU Computation of Euler Characteristic Curve up to 6.77x speedup
- 4. GPU Computation of Persistent Homology up to 20.3x speedup
- 5. GPU Computation of Morse Complex up to 29.5x speedup

Thank You!