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Abstract of the Dissertation

Topology-Driven Learning for Images:
Applications and Acceleration

by

Fan Wang

Doctor of Philosophy

in

Computer Science

Stony Brook University

2024

The integration of topological methods into deep learning, par-
ticularly through persistent homology, has seen significant growth
recently. Persistent homology, a key concept in Topological Data
Analysis (TDA), offers insight into the topological characteristics
of data by tracing their evolution across scales. This thesis explores
the application of persistent homology to deep learning challenges,
specifically focusing on ensuring the topological integrity of gen-
erated images. We enhance the robustness of a generative adver-
sarial network by introducing a penalty based on the disparity in
topological properties between the generated images and the train-
ing distribution. This approach ensures that the generated images
resemble the training data not only visually but also in their topo-
logical characteristics.

As the second application, We extract persistent homology from
breast DEC-MRI volumes as an approximation of fibroglandular
tissues and use it to explicitly direct the attention of a 3D network
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to a smaller set of voxels with high biological relevance. This tar-
geted approach allows the network to focus on areas that are most
indicative of underlying pathologies.

Despite the practical benefits, challenges remain in melding persis-
tent homology with deep learning due to computational demands.
Addressing this, the research focuses on massively parallel GPU
algorithms to expedite persistent homology calculations, aiming to
bridge this gap in deep learning frameworks. The shift from CPU
to GPU computing is driven by the diminishing returns of Moore’s
Law, prompting a transition to accelerated computing with GPUs
leading the performance enhancement.

This research delves into persistent homology computation for im-
age data—essential in fields ranging from medical imaging to phys-
ical simulations, and crucial in deep learning as convolutional net-
work outputs. This thesis introduces a streaming GPU algorithm
for computing persistent homology in 2D and 3D digital images,
addressing a notable bottleneck in deep learning training times. By
constructing a cubical complex and utilizing discrete Morse theory
for gradient vector field development, the proposed algorithm ap-
plies innovative massively parallel algorithms for topological sort-
ing and path parity to formulate Morse boundaries. It assembles
partial boundary relations from discrete data segments into a uni-
fied global boundary matrix for reduction, employing specialized
measures to manage Morse matchings at chunk and GPU borders.
This ensures the fidelity of persistent homology within a stream-
ing context. The resulting algorithm exhibits exceptional speed
improvements in preprocessing and persistent homology computa-
tions, surpassing existing state-of-the-art methods.

This work aims to contribute substantially improved algorithms to
the TDA community, significantly reducing computation times and
fostering further applications of topological loss in deep learning,
thereby removing computational barriers and advancing the field.
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Chapter 1

Introduction and Overview

Persistent homology, a central concept in topological data analysis (TDA),
provides a powerful framework for analyzing and understanding the shape of
data across multiple scales. By tracking how topological features like holes
and voids appear and disappear as one filters through the data, it offers a
robust method for capturing the intrinsic geometric and topological properties
of complex datasets. Applications of persistent homology span a wide range
of fields, from identifying new materials in chemistry to understanding the
structure of the universe in cosmology, and from enhancing machine learning
algorithms to improving medical diagnoses through better analysis of biomed-
ical images. Its versatility and ability to provide meaningful insights into the
underlying structure of data have led to a surge in popularity across various
disciplines, heralding a new era of interdisciplinary research where mathemat-
ics meets real-world challenges.

This thesis first explores the integration of persistent homology within the
framework of deep learning, showcasing its potential to significantly improve
the interpretability and effectiveness of deep learning models. Through a series
of applications, this work demonstrates how persistent homology can provide
deep insights into data structure and dynamics, opening new avenues for re-
search and innovation in fields where understanding the shape and features of
high-dimensional data is crucial.

Furthermore, this thesis is dedicated to tackling the challenge of efficiently
computing persistent homology, a pivotal tool in topological data analysis that
reveals the underlying topological features of complex data sets across different
scales. It delves into the development and refinement of computational meth-
ods that enhance the speed and accuracy of persistent homology calculations,
making it more accessible for broader applications.
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1.1 Applications of Persistent Homology

The adoption of persistent homology in the realm of data analysis has gar-
nered significant interest due to its profound ability to elucidate the under-
lying topological and geometric structures of complex datasets. As a branch
of topological data analysis (TDA), persistent homology offers a nuanced per-
spective on data by capturing the birth, persistence, and death of features
across multiple scales, providing insights that are imperceptible through tra-
ditional data analysis techniques. Its applications span a broad spectrum,
ranging from the study of brain connectivity networks in neuroscience to the
characterization of material properties in physics. Recently, there has been a
notable trend toward integrating persistent homology with deep learning, aim-
ing to leverage the strengths of both fields. This integration seeks to enhance
the interpretability and performance of deep learning models by incorporating
topological and geometric information, opening new avenues for research and
application in areas where understanding the shape and structure of data is
critical.

In this context, my work introduces two significant contributions: To-
poGAN in Chapter 3 and TopoTxR in Chapter 4. TopoGAN is an innovative
approach that integrates topological loss into the training of generative ad-
versarial networks (GANs), ensuring the topological correctness of generated
images. By employing topological loss, TopoGAN effectively guides the gen-
erative model to produce images that not only are visually convincing but
also adhere to the desired topological properties, bridging the gap between
visual realism and topological accuracy. Meanwhile, TopoTxR stands at the
intersection of medical imaging and topological data analysis, offering a novel
biomarker for predicting pathological complete response (pCR) to breast can-
cer treatment. Utilizing persistent homology as a means to approximate the
fibroglandular tissue structures in breast dynamic contrast-enhanced magnetic
resonance imaging (DCE-MRI), TopoTxR represents a groundbreaking step
towards harnessing the power of TDA for significant clinical applications, po-
tentially improving the accuracy of treatment response predictions and per-
sonalizing therapeutic strategies.

1.2 GPU Computation of Persistent Homol-

ogy

The computation of persistent homology remains a resource-intensive and
time-consuming process, which significantly restricts its broader application
across various fields. Despite its proven utility in uncovering the intricate
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topological structures of data, the high computational cost and the substan-
tial amount of time required to analyze large datasets act as barriers. This
limitation not only hampers the adoption of persistent homology in disciplines
that could benefit from its insights but also challenges researchers striving to
integrate it into real-time or large-scale analysis workflows. Overcoming these
obstacles is crucial for unlocking the full potential of persistent homology in
widespread applications, from scientific research to industry solutions.

In this thesis, we embark on enhancing the computational efficiency of
topological data analysis by introducing several innovative solutions. Initially,
we present a GPU-based algorithm specifically designed for calculating Euler
Characteristics in Chapter 6, setting the stage for more efficient topological
analyses. Subsequently, we delve into a hardware design aimed at accelerat-
ing boundary matrix reduction, which is arguably the most time-consuming
aspect of persistent homology computation in Chapter 5. This approach ad-
dresses a critical bottleneck, paving the way for faster processing times. We
intend to propose a comprehensive GPU algorithm tailored for persistent ho-
mology computation itself. This algorithm is developed to leverage the parallel
processing power of GPUs, significantly reducing the computational load and
time required for analyzing complex datasets. Together, these contributions
represent a substantial advancement in the field, offering tools and method-
ologies that could broaden the application and impact of persistent homology
in various research areas.
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Chapter 2

Related Work

In this chapter, we delve into an extensive review of the related works found
in the literature. We explore various studies and developments that have
contributed to the field, highlighting the key methodologies, findings, and
theoretical frameworks that have shaped current practices.

2.1 Topological Data Analysis and Persistent

Homology

Topological Data Analysis (TDA) employs topological techniques, notably per-
sistent homology, to analyze datasets, drawing on foundational and advanced
works in the field [1–7]. This approach has found diverse applications across
various domains [3, 8–20], showcasing the versatility and breadth of TDA.

The integration of TDA with deep learning has seen innovative attempts
to infuse topological insights into neural network models, leveraging the differ-
entiable nature of persistent homology. This integration hinges on the concept
that persistence diagrams and barcodes, which document topological trans-
formations, are differentiable relative to input data. The pioneering work by
[8] introduced a topological loss function for image segmentation that aligns
persistence diagrams in a supervised fashion. Echoing this approach, [21] uti-
lized persistence barcodes to impose topological constraints on target objects,
yielding improvements in structural precision. Such topological loss functions
have since been extended to other imaging tasks [22, 23] and broader learning
challenges [6, 24–26], illustrating the method’s adaptability.

Unlike previous strategies that apply topological priors in supervised learn-
ing scenarios, primarily for segmentation, our research adopts these priors in
an unsupervised context. We explore the use of topological constraints within
a reverse engineering framework to streamline the identification of triggers, en-
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suring that the deduced triggers exhibit minimal connected components. This
novel approach aims to harness topological properties to refine and guide the
learning process, potentially opening new pathways for unsupervised learning
applications.

2.2 Deep Learning with Topology

Recent research in deep learning has broadened its impact across various fields,
showcasing significant innovations in technology and applications. Lin et al.
proposed an end-to-end immediate implant placement AI tool through sagittal
root inclination measurements without intermediate steps and extra labeling
on images [27]. Zhan et al. transformed multiple transmitter localization into
a series of computer vision challenges, introducing a deep learning-based so-
lution [28, 29]. Similarly, Wu et al. developed a system for refining clinical
note embeddings through representation learning [30] and enhanced embed-
dings using a triplet network and metric learning [31]. In another advance-
ment, a novel topology-guided attention mechanism has been utilized to focus
CNNs on biologically relevant regions [32]. Yao et al. addressed the issue of
noisy segmentation ground truths by proposing a spatial correction method
for annotations [33]. Furthermore, Lyu et al. explored attention anomalies
in Trojaned BERT models [34], introduced Trojan Attention Loss to improve
attack efficacy [35], and extended their studies into backdoor attacks [36–38],
enriching the landscape of security in AI models. Zheng et al. study the Tro-
jan attach problem by introducing the concept of Trojan Twin Model [39].
Lyu et al. apply transformer for mortality prediction [40]. Dong et al. use
LSTM-HeterRGNN model for overdose risk prediction [41]. Li et al. calibrate
uncertainty for semi-supervised crowd counting [42] and estimate confidence
using unlabelled data [43, 44].

Miao and colleagues have made significant contributions to the understand-
ing of behavioral patterns in DeepFake videos as outlined in their 2022 study
[45]. They have also pioneered the patch distribution prediction approach
for tracking eye movement, as detailed in their subsequent 2023 work [46].
Complementing these insights, Ren et al. have utilized convolutional neural
networks for the analysis of dental panoramic radiographs, demonstrating the
versatility of CNNs in dental imaging studies [47, 48]. Beyond the realm of
dentistry, Ren and team have introduced a self-supervised learning framework
for the removal of motion artifacts in optical coherence tomography angiogra-
phy [49], which has implications for enhanced 3D cerebral blood flow imaging
in conscious rodents [50]. Their research extends to the development of a
weakly supervised approach for identifying cell activation, further illustrating
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the potential of machine learning in biological imaging [51].
In response to the computational demands of neural networks, Wang et al.

have spearheaded multiple strategies for optimization. They have introduced
an efficient approach to neural architecture search, showcasing its efficacy in
[52]. Building on their momentum, they further advanced the field with a
novel neural network pruning method detailed in [53], aiming to streamline
network structures without compromising performance. Their research con-
tinued with the development of a balanced training paradigm for generative
adversarial networks (GANs), which they elucidated in [54]. This balanced
approach addresses the often challenging training process of GANs, fostering
stability and improving output quality. Additionally, they presented an in-
novative network initialization technique in [55], which optimizes the starting
conditions for neural network training, contributing to a faster and potentially
more convergent learning process.

GAN for images with fine structures. Generative Adversarial Nets (GANs)
[56] have gained significant popularity for their ability to model complex data
distributions effectively. A transformer based GAN has been used for time-
series data generation [57, 58]. A GAN comprises two main components: a
discriminator and a generator. The generator’s goal is to create synthetic data
that can fool the discriminator, which in turn tries to distinguish between the
real and the synthetic data. Training of GANs continues until a Nash equi-
librium is reached where the generator produces data indistinguishable from
actual data, characterized by the discriminator loss which reflects the Jensen-
Shannon divergence between the distributions of real and synthetic data.

One known issue in GAN training arises when the support between the real
and synthetic data distributions does not overlap, leading to zero gradients for
the discriminator and thus stalling the generator’s learning. The introduction
of Wasserstein GAN (WGAN) [59] mitigates this problem by utilizing the
Wasserstein distance to more robustly measure the distance between real and
synthetic distributions. However, implementing WGAN involves maintaining a
1-Lipschitz function for the discriminator, which is challenging. Techniques to
enhance this aspect of WGANs have been developed [60–62], including various
gradient penalty methods proposed to stabilize GAN training and encourage
convergence to a local equilibrium [63–65].

Despite these advancements, while GANs excel at generating visually re-
alistic images, they often do not guarantee the correctness of finer topological
details in the generated images. This issue points to the need for incorporating
topology-aware regularization in GANs. Addressing topological inaccuracies
is vital as it enhances the structural integrity and realism of generated images.
Techniques such as topology regularization have been proposed to address this
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issue by reducing topological noise in the images generated by GANs [66].
Furthermore, advanced strategies like spectral normalization [61] and the

use of large batch sizes along with truncation tricks [67] have shown to improve
GAN training, achieving state-of-the-art results on benchmarks like ImageNet.
Local patch-based approaches such as PatchGAN [68] focus on capturing high-
frequency details by applying GANs to small sections of the image, proving
effective in various applications including Pix2pix [68], CycleGAN [69], and
SinGAN [70]. These methods emphasize the importance of preserving detailed
structures in generated images, thus enhancing the overall quality and utility
of GAN-generated visuals.

In the realm of Generative Adversarial Networks (GANs) that focus on
geometric aspects, several models integrate geometry to enhance image gener-
ation. The geometricGAN [71] utilizes the concept of large margins, akin to
Support Vector Machines (SVMs) [72], to refine both discriminator and gener-
ator learning processes. The Localized GAN (LGAN) [73] employs local coor-
dinates to articulate the data manifold’s local geometry. Specifically designed
for facial imagery, the Geometry-Aware GAN (GAGAN) [74] incorporates face
shape priors, while the Geometry-Consistent GAN (GcGAN) [75] ensures se-
mantic integrity of images through a geometry-consistency constraint. These
transformations typically involve image flipping and rotation.

Regarding high-order structural data in adversarial networks for seman-
tic segmentation, several existing techniques [76–78] utilize adversarial losses
within the semantic segmentation framework to harness high-order structural
data. Nonetheless, these approaches largely overlook the preservation of topol-
ogy.

Topological information for image analysis. Various methodologies have
been suggested for using persistent homology directly as a tool for feature
extraction. These topological features are vectorized [14] and subsequently in-
tegrated into kernel machines [79–81] or employed within deep neural network
architectures [82]. In fully supervised image segmentation tasks, topological
considerations are often used as a directive constraint or loss to enhance the
quality of segmentation [8, 83, 84]. Mosinska et al. [85] adopt an implicit
approach to modeling topology via feature maps from pretrained VGG net-
works [86], though this technique falls short in adapting to unseen geometric
structures. Additional studies have focused on specific applications like reti-
nal vessels [87] and lung airways [88], primarily concentrating on connectiv-
ity (0-dimensional topology) and showing limitations in extending to higher-
dimensional topologies. In machine learning, topological data is increasingly
being used to explore the topology of data manifolds [13, 24, 26, 89] and to
enhance graph learning through sophisticated structural information [17, 90].
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In the context of evaluating generative models, Khrulkov and Oseledets [91]
have advanced a method that employs the topology of the data manifold to as-
sess the disparity between synthetic and real data distributions. This provides
a qualitative metric for generative models’ effectiveness. Despite its innova-
tion, this metric primarily addresses the standard image feature space and falls
short in accurately determining whether the generator has effectively captured
the real image topology.

Furthering the exploration of topology in generative models, Brüel-Gabrielsson
et al. [92] implemented a specialized loss function to uphold connectivity con-
straints within generated images. However, the application of such predefined
topological constraints, like connectedness, may not truly aid the generator in
learning the authentic topological distribution inherent in real data. This is
because these constraints are artificially imposed rather than learned from the
data itself.

Addressing these limitations, TopoGAN emerges as the pioneering gener-
ative model that autonomously learns topological features directly from real
images. This advancement marks a significant step forward in allowing gener-
ative models to more deeply understand and replicate the complex topological
properties observed in natural data sets.

2.3 Topological Data Analysis for Breast DCE-

MRI

Quantitative imaging characteristics, in tandem with machine learning tech-
niques, have been pivotal for predicting pathological complete response (pCR),
as evidenced by various studies [93, 94]. The field of radiomics, which deals
with the quantitative analysis of tumor features such as texture and shape,
has been promising in gauging treatment outcomes. Specifically, these features
are adept at depicting both the primary tumors and, more recently, the sur-
rounding tissue zones [95, 96]. However, the utility of these methods is often
curtailed by their prescriptive nature, a shortfall in universal applicability, de-
pendency on precise lesion demarcation, and a gap in elucidating phenotypic
variances beyond the immediate tumor vicinity.

Convolutional Neural Networks (CNNs) have been deployed for analyz-
ing breast Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-
MRI) to forecast pCR [97–100]. Given the less-than-ideal performance of
models based solely on images, there has been a move towards integrating
image-based CNN models with clinical data not captured in images, thereby
enhancing predictive accuracy [101]. Efforts have been made to decompose
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stain in multiplex immunohistochemistry images with unsupervised learning
[102]. Yao et al. applies topological analysis of mouse brain vasculature via
3D light-sheet microscopy images [103].

The literature is replete with instances of CNN applications in mammogram-
based cancer diagnosis, underscoring their utility in this domain [104–106].
However, the inherent limitation of mammograms, being 2D projections of
3D structures, introduces challenges in interpreting the data they provide.
While 2D mammography struggles with data interpretation, 3D mammogra-
phy, though offering depth, does not adequately inform on the dynamics of
tissue enhancement, both of the tumor and its surrounding areas. Compara-
tive analyses have demonstrated MRI’s superiority in detailing breast cancer’s
scope over mammography, which, alongside ultrasound, often misestimates tu-
mor dimensions following neoadjuvant chemotherapy in about 8% of instances,
as highlighted by retrospective evaluations [107–109]. The aim of conducting
post-chemotherapy examinations is to assess residual disease, yet traditional
methods like mammography, ultrasound, and physical assessments only iden-
tify pCR in 13-25% of cases, as observed in specific studies [110–112]. Despite
their limitations, MRI and ultrasound are preferable to mammography for de-
tecting remaining tumors, with MRI particularly outperforming in detecting
multifocal or multicentric diseases [109].

The utilization of topological data, especially through the lens of persis-
tent homology [113], presents a sophisticated method for encoding the intri-
cate topological nuances present within images. This form of data representa-
tion, encapsulated through persistence diagrams or barcodes, has been applied
across a spectrum of image analysis endeavors, including the examination of
cardiac imagery [84], analysis of brain networks [114], and the segmentation of
neuron images [8]. In a novel stride, the integration of this topological perspec-
tive with deep learning architectures has been explored to introduce topologi-
cal rigor into image segmentation tasks, showcasing significant advancements
[8, 21, 115, 116]. The exploration into translating persistence diagrams into
learnable frameworks spans several methodologies, ranging from vectorization
strategies [14], to the utilization of kernel methods [79–81], and the incorpora-
tion into deep learning paradigms [82]. Moreover, the adoption of graph-based
formulations of topology, efficiently synergized with Graph Neural Networks
(GNN), has broadened applications to include pathology image categorization
[117] and the distinction of retinal blood vessels [118]. An intriguing, albeit
less robust form of topological data, the Betti curve, has been harnessed for
enhancing learning with breast imagery [119]. Yet, the potential of directly
engaging with the geometric manifestations of topological constructs, such as
cycles and voids, remains largely untapped. These constructs hold the key
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to unraveling the geometric intricacies of breast tissue structures, like fibrog-
landular tissues, offering a novel pathway for CNN analysis by mapping these
topological insights back onto the original volumetric data.

This discourse introduces a pioneering deep learning strategy that capi-
talizes on the geometric attributes of topological constructs, utilizing them
as an explicit mechanism for directed attention within our model. By iden-
tifying and focusing on loops and bubbles that outline the detected topologi-
cal features, we forge a deep learning architecture that concentrates on these
significant topological elements. This approach diverges from conventional
reliance on hand-crafted features, demographic information, or learned rep-
resentations. Instead, it leverages the geometric fidelity of tissue structures
revealed through persistent homology, translating these insights into a format
amenable for CNN processing.

The extraction of explicit tissue structures presents a formidable challenge,
notably due to the frequent absence of definitive ground truths for training
segmentation models. Persistent homology offers a resolution to this dilemma
within various biomedical imaging contexts, enabling the unsupervised ex-
traction of structurally informative features [8, 21, 84, 120–122]. Despite its
potential, many existing methodologies have largely confined their use of per-
sistence diagrams to a role as direct features. The geometric wealth contained
within the topological structures identified by these algorithms remains un-
derutilized, suggesting a fertile ground for innovation.

Self-attention, a concept ushered in by the transformer architecture [123],
revolutionizes the dynamic capture of relationships within data sequences
through its mechanism. In the realm of visual tasks, spatial attention crafts an
attention map by mining the spatial relationships within a feature map, while
channel attention distills information across different channels into a singular
attention vector [124]. The introduction of mask-guided attention into spatial
attention modules sharpens the focus of the model, directing it towards regions
of interest with heightened precision [125]. By clearly delineating these areas,
the model is empowered to selectively engage with relevant sections, sidelining
potential noise or less pertinent areas as dictated by the mask. This targeted
approach not only streamlines the training process but also enhances overall
model efficacy.
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2.4 Hardware Acceleration of Persistent Ho-

mology Computation

In this section, we delve into the existing literature surrounding the hard-
ware acceleration of persistent homology computation. Our focus spans across
a range of hardware solutions specifically tailored to enhance the computa-
tion and access patterns inherent to various aspects of persistent homology
analysis. This encompasses both custom-designed hardware optimized for the
unique computational demands and access patterns of persistent homology
processes, as well as more generalized solutions utilizing Graphics Process-
ing Units (GPUs). The exploration of these hardware accelerations aims to
identify strategies that significantly reduce computational time and improve
efficiency, thereby facilitating the broader application and deeper investigation
of persistent homology in complex data analysis. Through this review, we aim
to highlight key developments and identify potential areas for innovation in
accelerating persistent homology computations, bridging the gap between the-
oretical mathematical concepts and their practical application in data analysis.

2.4.1 GPU Computation of Euler Characteristic Curves

Due to their straightforwardness, both the Euler characteristic curve (ECC)
and the Euler characteristic (EC) are widely utilized across various disciplines,
particularly in imaging-related domains. An insightful overview of this subject
can be found in the comprehensive review authored by Worsley [126], from
which we draw inspiration for the applications discussed below. Subsequently,
we delve into the existing computational literature pertinent to this area.

Figure 2.1: Visualizations of Gaussian random fields generated with different
levels of smoothness.

Diverse Applications. Concepts akin to the Euler characteristic (EC) emerged
within the realm of astrophysics as early as the 1970s, where the Euler charac-
teristic curve (ECC) was referred to as the genus curve. Formalization of these
concepts occurred in 1986 with the work of Gott et al. [127], investigating the
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sponge-like topology evident in large-scale cosmic structures. Subsequently,
the ECC gained prominence in the analysis of imaging data related to the
cosmic microwave background (CMB) radiation [128], with roots traced back
to earlier research on the topology of Gaussian random fields (GRFs) by Adler
and Hasofer [129], utilized for modeling the CMB. Notably, Fig. 2.1 showcases
visual representations of GRFs.

Within the field of bone morphometry, ideas surrounding the EC gained
traction, culminating in formal mathematical treatment in 1993 [130]. Here,
the EC played a pivotal role in characterizing trabecular bone structures, par-
ticularly in computing the first Betti number, referred to as the connectivity
within this context.

Moreover, the EC serves as a fundamental tool in morphological image
processing [131], where it is commonly employed to delineate the shape of
thresholded (binary) images under the guise of the Euler number. Subse-
quently, it found application in computing the ECC across all thresholds of
grayscale images, known as the stable Euler number [132]. Notably, the zero-
crossing of the ECC plays a crucial role in selecting segmentation thresholds,
as illustrated in Fig. 6.2, where it distinctly highlights riverbeds in terrain
datasets.

Emergence of ECC in Topological Data Analysis (TDA). While per-
sistent homology remains the dominant approach in contemporary topological
data analysis (TDA), several recent studies have highlighted the utility of the
Euler characteristic (EC) and Euler characteristic curve (ECC) in this domain.
Bobrowski and Skraba [133] demonstrate the remarkable effectiveness of ECC
in analyzing percolation thresholds within random cubical filtrations and other
stochastic models. Crawford et al. [134] propose a novel statistic based on EC,
proving its efficacy in predicting clinical outcomes for brain cancer patients us-
ing brain imaging data.

Furthermore, Amezquita et al. [135] explore the application of EC-based
image transforms in analyzing barley shapes. Lin et al. [136] investigate the
utility of various handcrafted features, including ECC, for analyzing magnetic
resonance images of the liver. Smith and Zavala [137] advocate for ECC as a
versatile data descriptor applicable across diverse data types such as graphs,
point clouds, and images, with a specific focus on its effectiveness in charac-
terizing liquid crystal system images.

The computation of Euler characteristic transforms, as explored by Bet-
thauser et al. [138] and Jiang et al. [139], presents an intriguing avenue. No-
tably, these computations often necessitate manipulation of filtration values
on a per-cell basis, contrasting with the standard case where filtration values
are assigned per voxel, as addressed by our software.
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Algorithmic Developments. The computational techniques employed di-
verge from the simplistic framework outlined earlier. Instead, they often lever-
age the intimate connection between the Euler characteristic (EC) and differ-
ential geometry. Notably, an efficient algorithm for EC computation in 3D
voxel data was introduced by Gott et al. [127], notable for its reliance on pre-
computed tables of voxel neighborhoods. In contrast, our approach is rooted in
the mathematical and algorithmic framework of cubical homology, a direction
pioneered by Kaczynski, Mischaikow, and Mrozek in the 1990s, with further
elaboration in their seminal work [140].

Originating in computational dynamics, this framework evolved into a
broader context, leading to the development of the first efficient, general-
dimension algorithm for EC computation of binary images by Ziou and Allili [141]
in 2001. This approach treats a binary image as a cubical complex, compactly
encoding its information. Despite its simplicity and efficiency, one drawback
lies in the memory overhead associated with storing the cubical complex.

The advent of efficient algorithms for Euler characteristic curve (ECC)
computation further propelled advancements. Snidaro and Foresti [132] in-
troduced the first efficient algorithm for 2D image ECC computation in 2003,
followed by Richardson and Werman’s 2014 work [142] for 3D images, and
Heiss and Wagner’s 2017 contribution [143] for arbitrary-dimensional images.
This methodology extends Ziou and Allili’s concept to cubical filtrations, ac-
commodating grayscale data. Notably, it introduces parallel computation and
streaming of images into memory in manageable chunks, enabling the han-
dling of images of arbitrary size. Our GPU implementation builds upon this
approach.

2.4.2 Hardware Acceleration of Boundary Matrix Re-
duction

In persistent homology computation, a critical step involves reducing a bound-
ary matrix. This matrix’s columns and rows correspond to simplices of various
dimensions (vertices, edges, triangles, and tetrahedra) within a domain’s dis-
cretization, illustrated in Fig. 2.3. A binary boundary matrix ∂ marks with a
1 when simplex σu, represented by row u, is part of the boundary of σv, rep-
resented by column v. The goal of boundary matrix reduction is to transform
this matrix into a simplified form using column additions in a binary field. This
process is often computationally intensive due to the massive size of bound-
ary matrices, even for relatively small input images. For instance, 28 × 28
pixel images from the MNIST dataset yield 1D and 2D boundary matrices of
sizes 784× 1512 and 1512× 729, respectively. As boundary matrix reduction
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Figure 2.2: The image is initially transferred from RAM to the GPU’s global
memory. Each block of threads undertakes the processing of a specific section
of the image. Within each block, every thread accesses a voxel and its eight
neighboring voxels, all denoted in a lighter blue hue. Upon completion of
block-level processing, the local result obtained by the block is amalgamated
with the global result. Finally, the comprehensive result for the entire image
is conveyed back to RAM.

becomes a significant bottleneck in persistent homology analysis, hindering
broader application, there’s a pressing need for its acceleration. Hardware ac-
celerators have shown potential in speeding up such computations significantly,
surpassing traditional CPU and GPU capabilities. Our approach, focusing on
hardware-specific optimizations, aims to enhance this process by up to 20,000
times, marking a pioneering effort in hardware-accelerated persistent homol-
ogy analysis.

2.4.3 GPU Computation of Persistent Homology

Research on applying topological methods to grid data, specifically through
persistent homology and Morse complexes, dates back several decades. Ini-
tially, Verri et al. [144] explored algebraic topology in the context of grid data
by analyzing topological features of size functions in 1993. The field expanded
with the work of Kaczynski et al. [145], who applied the Conley index to study
dynamics in nonlinear systems, with further applications emerging over time
[146]. Wang et al. propose an efficient GPU algorithm for Euler Characteris-
tic Curve computation [147] and a hardware accelerator for boundary matrix
reduction [148].

In recent years, there has been a notable increase in the topological analysis
of grid data. For example, Bendich et al. [149] devised a method to approx-
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Figure 2.3: The figure showcases key elements of topological data analysis.
At the top left, it displays a simplicial complex annotated with filter function
values next to vertices, edges, and faces. The top right focuses on simplices
of dimensions 0, 1, 2, and 3. The bottom row provides examples of bound-
ary operators acting on 1-, 2-, and 3-dimensional simplices, illustrating the
mathematical foundation behind the construction and analysis of simplicial
complexes in topological studies.

imate the persistent homology of 3D grid data. Employing discrete Morse
theory for efficient gradient pair assignments, Robins et al. [150] achieved a
reduction in the size of the boundary matrix while maintaining the integrity
of the original topology. Concurrently, Wagner et al. [151] introduced a new
technique for generating boundary matrices efficiently, facilitating exact per-
sistence calculations for grid data across various dimensions. This method has
gained widespread adoption in tools such as Gudhi [152] and DIPHA [153],
although its application often necessitates further simplification due to the
large size of the boundary matrices involved.

Günther et al. [154] introduced a memory-efficient method for storing
matchings to handle large datasets, although this approach notably increased
the complexity of implementation. Expanding upon the work of Robins et al.
[150], Mischaikow and Nanda [155] extended the application of these methods
beyond cubical complexes, implementing the Perseus software to compute per-
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sistence across various data types. Their methodology emphasized flexibility,
enabling a wide range of applications, albeit at some cost to efficiency. They
also pioneered a streaming preprocessing technique where individual level sets
are stored, simplified, and then merged separately.

In contrast, our approach uses spatial decomposition of the volume, build-
ing on Robins et al.’s ProcessLowerStars method. This strategy was further
developed by Wagner [156], who introduced a topology-preserving streaming
method that partitions large grid data into slices for parallel processing. Our
research adapts this streaming scheme to GPU architectures, enabling highly
parallel execution of ProcessLowerStars on individual GPU threads for sepa-
rate voxels, as opposed to Wagner’s method which assigned each CPU thread
to process an entire data slice.

Moreover, the utility of discrete Morse theory for data visualization simpli-
fications was showcased by Gyulassy et al. [157], who processed a billion-voxel
volume on standard hardware in a single day. However, it was noted that
these simplified complexes are not suitable for computing persistent homology
of the original data [158].

The advent of modern GPU capabilities has spurred the development of
rapid, memory-efficient parallel methods for topological analysis of extensive
scientific datasets. For instance, Zhang et al. [159] developed Ripser++, a
GPU-accelerated algorithm that enhances the efficiency of Vietoris-Rips com-
putations. Concurrently, a method taking advantage of GPU parallelism was
introduced by [147] for computing cubical complexes and Euler characteristic
curves on grid data. Subhash et al. [160] presented a GPU parallel algorithm
that efficiently addresses the path counting challenge in Morse-Smale com-
plexes by transforming graph traversals into parallel tasks. Our contribution
to this area includes a novel parallel topological sorting method and a parallel
algorithm for path parity calculations, effectively solving the path counting
issue.
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Chapter 3

Topology-Aware Generative
Adversarial Network

3.1 Introduction

This thesis introduces an application of persistent homology—a topology-
aware generative adversarial network. Generative adversarial networks (GANs)
[56] have demonstrated significant success in producing highly realistic images.
These networks involve training a generator to create images that mimic real
ones, while simultaneously training a discriminator to differentiate between
these synthetic and actual images. Through a minimax game, the generator
evolves towards a model capable of sampling synthetic images from a distri-
bution that aligns closely with that of genuine images.

A critical aspect of designing GANs is addressing how to effectively min-
imize the disparity between synthetic and real image distributions, not just
in terms of visual likeness but also in semantic content. Research has high-
lighted [161, 162] that while traditional GANs [56, 59, 60, 163–165] typically
match the first order moments of these distributions within a CNN-based fea-
ture space, more advanced techniques strive to align higher order statistics.
For instance, methods have been developed to match second order statistics
of image features [162, 166]. Specifically, Kossaifi et al. [74] integrate a statis-
tical shape prior for face images into the generator. This approach is founded
on the principle that the more complex, higher-order information a generator
can assimilate, the more semantically rich and realistic the generated images
become.

In our research, we emphasize the significance of structural information
within images. Numerous applications involve imagery featuring intricate
topologies, such as biomedical images depicting neurons, membranes, or blood
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Figure 3.1: Sample images displaying structures such as neuron membranes
and road networks from satellite imagery. Top to bottom: neuron images
from CREMI and ISBI12, and road network images from Google Maps. From
left to right: actual images, images generated by TopoGAN, WGAN-GP, and
WGAN-SN. Each actual and synthetic image is accompanied by a textured
version. Textures for synthetic images are applied using a separately-trained
pix2pix network.

vessels, and satellite images showing road networks (Fig. 3.1). The topolog-
ical characteristics of these structures—such as their connectivity and loopi-
ness—carry essential semantic and functional information. Maintaining struc-
tural fidelity is paramount when synthetic images are used to train downstream
applications like diagnostic tools that analyze the structural complexity of reti-
nal vessels, navigation systems reliant on road network topology, or classifiers
that assess neuron morphology and connectivity.

In this study, we introduce TopoGAN, a pioneering GAN model designed
to learn and replicate the topology of real data. Topology in this context refers
to the structural complexity indicated by the number of connected components
and holes, which are globally challenging attributes to capture. Traditional
GAN discriminators, which differentiate synthetic from real images based on
CNN-based features, do not account for topological differences. Consequently,
this limits the generator’s ability to accurately learn and replicate the topology
of real images. As depicted in Fig. 3.1, structures generated by conventional
GANs, such as WGAN-GP and WGAN-SN, often appear fragmented and
disconnected.

Our key technical innovation is the development of a topological GAN loss,
which precisely aligns the synthetic and real image distributions based on
their topological characteristics. Utilizing persistent homology theory [113],
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we transform both synthetic and real images into a topological feature space
to measure and quantify topological discrepancies as a loss. This loss is differ-
entiable, allowing for optimization through backpropagation. Our topological
GAN loss enhances the capabilities of the existing discriminator, enabling the
generator to produce images that are not only realistic in terms of CNN-based
features but also in topological attributes (Fig. 3.1). It’s important to note
that TopoGAN primarily focuses on generating binary images, or masks, that
outline the structures of interest. Once these topologically accurate structures
are generated, additional textural details can be applied using existing tech-
niques such as pix2pix [68].

TopoGAN stands out as the inaugural generative model that effectively
learns topology directly from real images, according to our findings. We have
validated the effectiveness of TopoGAN through extensive testing across di-
verse datasets, including biomedical, satellite, and natural images. The success
of our approach is quantified using the traditional FID score [167] alongside two
innovative topology-aware metrics we developed based on persistent homology
and the Betti number. Our results indicate that TopoGAN significantly sur-
passes conventional GAN models in these topology-specific evaluations. Ad-
ditionally, we demonstrate that images synthesized with accurate topological
features can enhance performance in subsequent applications such as image
segmentation.

Our contributions within this research are multifaceted and significant:

• We introduce a novel topological GAN loss that quantifies the disparity
between synthetic and real image distributions based on their topological
characteristics. Unlike previous approaches that apply topological loss at
the instance level [8], our methodology is the first to promote topological
congruence across entire distributions.

• We confirm that this topological loss is differentiable, enabling its inte-
gration into the standard GAN training process, thus bridging the gap
between traditional feature-based and topology-focused learning.

• We develop new topology-aware metrics that provide a more precise
measure of a generator’s performance in replicating topological features,
offering a deeper insight into the quality of generated images beyond
conventional metrics.

Through these innovations, TopoGAN not only advances the field of gen-
erative modeling by incorporating topological learning but also sets new stan-
dards for evaluating and understanding the complexities involved in synthe-
sizing topologically accurate images.
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3.2 Method

In our TopoGAN framework, we have engineered a mechanism that aligns the
distribution of synthetic images with that of real images, effectively matching
both on conventional image features and topological attributes. To achieve
this, we have incorporated a novel loss term specifically for the generator,
denoted as Ltopo(Pdata, G). This topological GAN loss is designed to evaluate
the proximity of the topology in images generated by the generator G to that
of the actual images. By minimizing this loss, the generator is compelled to
produce synthetic images that closely mirror the topology of the real images.

The overall loss function for the discriminator is outlined in Eq. (3.1). For
the generator, the total loss is defined in Eq. (3.2) and comprises the tradi-
tional generator loss combined with the new topological GAN loss. Formally,
we have

arg maxD

[
Ex∼Pdata

logD(x) + Ez∼Pz log(1−D(G(z)))
]
, (3.1)

arg minG

[
Ez∼Pz log(1−D(G(z)))︸ ︷︷ ︸

conventional generator loss

+λ Ltopo(Pdata, G)︸ ︷︷ ︸
topological GAN loss

]
, (3.2)

where λ controls the weight of the topological GAN loss.
In our TopoGAN framework, the primary focus is on the generation of

binary images, specifically masks that outline critical structures such as blood
vessels, neuronal membranes, and road networks. The generator is designed to
produce a real-valued grayscale image that represents these synthetic masks.
These masks are interpreted by the discriminator as real-valued grayscale im-
ages with intensity values ranging from 0 to 1. Once these masks are generated,
textural details are added using a separately trained pix2pix [68] network,
which enhances the masks with realistic textures based on the underlying
structure outlined by the mask.

The remainder of this section is dedicated to detailing the definition and
optimization of the topological GAN loss. In Sec. 3.2.1, we delve into the
method of extracting topological features, specifically the persistence diagram,
from an input mask using persistent homology theory. This diagram is a crucial
element in understanding the topological structure of the masks.

In Sec. 3.2.2 and Sec. 3.2.3, we articulate the specifics of the topological
GAN loss. This involves comparing the distributions of persistence diagrams
derived from both synthetic and real images. The objective of minimizing
this loss is to align a synthetic persistence diagram more closely with its cor-
responding real diagram. Adjusting the persistence diagram in this manner
encourages the development of structural masks that complete almost-loops,
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Figure 3.2: Illustration of persistent homology. Top row, from left to right:
the initial input mask, framed to ensure all branches form discernible holes;
the distance transform; and the resulting persistence diagram. Bottom row:
a sequence of sublevel sets at various thresholds, showcasing the formation
and filling of different holes. All original holes are born at t = 0, while an
almost-hole (indicated in red in the diagram and sublevel sets) emerges at a
later time (t = 15).

thus preventing the generation of images with incomplete topological features.
This strategic approach is pivotal in teaching the generator to produce more
accurate and topologically consistent images.

Additionally, as a novel technical contribution, we introduce two new topology-
aware metrics in Sec. 3.2.4. These metrics are designed to evaluate the per-
formance of the generative model by comparing the distributions within the
topological feature space, offering a refined measure of how well the synthetic
images match the topological characteristics of real images. These metrics
provide a deeper insight into the effectiveness of the topological enhancements
incorporated within the TopoGAN framework.

3.2.1 Persistent Homology: From Images to Topologi-
cal Features

In our study, we utilize the theory of persistent homology to extract topolog-
ical features from input masks, focusing on a comprehensive representation
that includes both clear and nearly-formed topological structures—referred to
as holes/loops and almost-holes/almost-loops, respectively. This process is
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visualized in Fig. 3.2, where these concepts are introduced with further elab-
oration available in supplemental materials and a key reference for topological
data analysis [113].

Considering a topological space y ⊆ R2, such as an image mask, the pri-
mary structures of interest are the holes (1-dimensional) and the connected
components (0-dimensional). In this paper, our focus is primarily on the 1-
dimensional topology, specifically the number of holes, quantified by the Betti
number, βy. An example from the CREMI dataset illustrates this, where a
neuron membrane structure is framed to ensure complete analysis through 1-
dimensional homology, as per the principles of algebraic topology [168].

In the depicted example (Fig. 3.2), there are five observable holes, giving
a Betti number of βy = 5. However, the Betti number traditionally captures
only fully formed holes. Notably, there is a dangling branch in the middle of
the image that nearly encloses an area, representing an almost-hole that the
Betti number does not account for. To address this limitation and effectively
incorporate these almost-formed structures into our analysis, we apply both
the distance transform and the refined techniques of persistent homology [113].
We review the distance transform:

Definition 1. The Distance Transform (DT) [169] generates a map D for
each pixel p on a binary image I: D(p) = minq∈Ω{||p − q|| | I(q) = 0}, in
which Ω is the image domain.

The process of extracting topological features from an image mask involves
transforming the mask into a scalar function fy : Ω → R+ across the entire
image domain, where Ω is the image space. We then introduce the concept of
sublevel sets for this function. A sublevel set is defined by applying a specific
threshold t, resulting in Ωt

fy
= {x ∈ Ω | fy(x) ≤ t}. This allows us to explore

different aspects of the mask’s topology by varying the threshold, which can
convert almost-holes into complete holes at certain values.

The collection of all these sublevel sets forms what is known as a filtration.
This filtration essentially illustrates the evolution of the mask as the thresh-
old is progressively increased, revealing new topological features at various
stages. Persistent homology analyzes this filtration to trace the life-cycle of
each topological feature—be it holes, connected components, or more complex
structures—across different threshold levels.

In Fig. 3.2, we observe the original five holes, which are present from the
start (birth at t = 0) and are progressively filled as the threshold increases
(death at different t values). An interesting feature, the almost-hole high-
lighted in red, emerges at a higher threshold level (birth at t = 15), when
one of the purple holes divides into two, and it disappears at t = 25 as the
filtration progresses and the gaps close.
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These life events of holes are depicted in a persistence diagram, where each
topological feature is represented as a point. The coordinates of these points
are defined by the birth and death thresholds of the corresponding features.
Thus, for our discussed example, the diagram contains five points originating
at birth = 0 and various death times, along with an additional red point
representing the almost-hole with a distinct birth time.

The utility of the persistence diagram is profound, as it provides a two-
dimensional summary of the topological changes within the mask across vari-
ous scales. It captures not just the existence of features, but their persistence
over the range of sublevel sets, offering a deeper insight into the structural
complexities of the image. This method is flexible and can be applied to any
scalar function defined over a topological space, not just distance transforms,
making it a powerful tool in topological data analysis.

3.2.2 Distance Between Diagrams and Topological GAN
Loss

In the development of our topological GAN framework, we employ a refined
technique to compare the topological features of synthetic and real images by
transforming each input binary image y into a persistence diagram, dgm(fy),
using distance transform and persistent homology. This diagram represents
the topological signature of y and serves as a crucial element in measuring
topological fidelity. We define our topological GAN loss based on the discrep-
ancies between the sets of diagrams derived from synthetic masks and those
from real masks, utilizing concepts from optimal transport theory [170] to fa-
cilitate these comparisons. An illustration of this loss concept can be viewed
in Fig. 3.3.

The distance between persistence diagrams is quantified using a version
of the p-Wasserstein distance, known for its robust properties [171, 172]. This
metric is traditionally used to measure the distance between two point sets
represented on a 2D plane—each point in these sets corresponds to a topolog-
ical feature (a hole or a connected component) in the persistence diagram.

However, for our specific application within the topological GAN frame-
work, we modify the traditional p-Wasserstein distance to better suit our needs.
We concentrate solely on the birth times of the topological features and disre-
gard their death times. This adaptation focuses on the critical aspects of topo-
logical formation—particularly the birth of almost-holes, which are pivotal in
understanding how well the synthetic image mimics the structural complexity
of the real image. By projecting the points from both diagrams onto the birth
axis, we compute their 1-Wasserstein distance, which calculates the optimal
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Figure 3.3: Our topology-processing pipeline. The process begins with a batch
of both real and synthetic masks. Each mask undergoes a distance transform
followed by persistent homology computation, resulting in its respective per-
sistence diagram—a collection of 2D points. These diagrams from real and
synthetic masks are compared using the 1-Wasserstein distance, focusing solely
on the birth times. The loss is quantified as the matching distance between
these sets of diagrams (real and synthetic), calculated through optimal trans-
port.

matching distance between these two sets of points along the birth dimension,
as depicted in Fig. 3.3.

This approach simplifies the analysis by focusing on the initial emergence
of topological features, rather than their persistence or resolution. In practice,
this means that the calculated distance primarily reflects the efforts required
to close the gaps in synthetic images to match the real images’ topology, par-
ticularly in terms of forming new holes. It is an effective measure for assessing
how well the synthetic process reproduces the complex topological structures
found in natural images. Through this modified metric, we aim to ensure that
our generated images not only resemble the real ones visually but also replicate
their intrinsic topological characteristics. Formally, the distance between two
diagrams dgm1 and dgm2 is

W1(dgm1, dgm2) = min
σ∈Σ

∑
x∈dgm1

|bx − bσ(x)| =
∑

x∈dgm1

|bx − bσ∗(x)|, (3.3)

in which Σ represents the set of all potential one-to-one correspondences be-
tween two diagrams, and σ∗ denotes the optimal matching that can be selected.
Here, bx indicates the birth time of a point x in dgm1. Similarly, bσ(x) and

24



bσ∗(x) are the birth times of x’s match σ(x) and optimal match σ∗(x) in dgm2.
To accommodate scenarios where the persistence diagrams dgm1 and dgm2

contain differing numbers of points, we employ a method that includes the di-
agonal line b = d (where birth and death times are equal) within the diagrams.
This approach allows points that cannot find a match in the opposing diagram
to be paired with the diagonal, effectively handling the imbalance. This con-
cept is not only a practical solution but also enhances the stability of the
metric, ensuring that the distance calculation remains robust under variations
in the diagram data [171].

The computation of matches is akin to the technique used in the sliced
Wasserstein distance [173], though simplified in our application to use only one
”slice” of the possible distributions, specifically where d = 0. This modification
focuses on the birth times, streamlining the computation while maintaining
effectiveness.

Topological GAN loss defined via matching persistence diagrams.
The topological GAN loss is designed to quantitatively measure the difference
between the topological features of synthetic and real images, captured in
their respective persistence diagrams. Given the complexities and constraints
of matching distributions, we devise a straightforward and computationally
efficient loss function.

To compute this loss, we identify an optimal matching π∗ between the sets
of persistence diagrams from the synthetic images Dsyn and the real images
Dreal. Each pair of matched diagrams contributes to the overall loss through
their diagram distance, denoted as W1 (referenced in Eq. (3.3)), which calcu-
lates the 1-Wasserstein distance between the birth time projections of the two
diagrams. We have

Ltopo =
∑

dgmi∈Dsyn

W1

(
dgmi, π

∗(dgmi)
)
. (3.4)

To identify the optimal matching π∗ between synthetic and real diagram
sets, we employ the optimal transport technique. Denote dgms

i ∈ Dsyn and
dgmr

j ∈ Dreal. Let nsyn and nreal be the size of Dsyn and Dreal. We solve
Monge-Kantorovich’s primal problem [170] to find the optimal transport plan:

γ∗ =min
γ∈Γ

nsyn∑
i=1

nreal∑
j=1

W1(dgms
i , dgmr

j) · γij (3.5)

where Γ = {γ ∈ Rnsyn×nreal

+ |γ1nreal
= 1/nsyn · 1nsyn , γ

⊺1nsyn = 1/nreal · 1nreal
}.

1n is an n-dimensional vector of all ones. Denote by γ∗ the optimal solution
to Eq. (3.5). We compute the optimal matching (π∗) by mapping the i-th
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synthetic dgms
i to the best matched real diagram w.r.t. the optimal trans-

portation plan, i.e., dgmr
h(i) such that h(i) = arg maxj γ

∗
ij [174]. Formally,

π∗(dgms
i ) = dgmr

h(i).

3.2.3 Gradient of the Loss

To analyze the gradient of the topological GAN loss function, we commence by
considering the equation of the loss, indicated as Ltopo =

∑
i L

i
topo, where each

individual component Li
topo =W1(DGMi, π

∗(DGMi)) represents the topologi-
cal loss for each synthetic persistence diagram. The persistence diagram DGMi

is derived from the distance transform applied to the binary mask yi, which
in turn is obtained by thresholding the output of the generator G(zi).

To compute the gradient with respect to the generator G, it is essential
to understand the dynamics of how the binary mask yi evolves during train-
ing. The evolution of yi can be visualized through the modifications in the
synthetic mask and the associated persistence diagram across successive iter-
ations, as illustrated in Fig. 3.4. Each training iteration modifies the mask
y progressively towards the critical saddle point s of the distance transform
function f . The function value f(s) at this saddle point diminishes towards
zero, prompting a corresponding movement of the dot x in the persistence
diagram towards the left, thereby decreasing its birth time bx. This movement
effectively narrows the 1-Wasserstein distance between the synthetic and real
persistence diagrams, optimizing the topological similarity.

Formally, by chain rule, we have
∂Li

topo

∂G
=

∂Li
topo

∂ dgmi
· ∂ dgmi

∂fyi
· ∂fyi
∂G(zi)

· ∂G(zi)
∂G

. Next,

we calculate each of the multiplicands.

Derivative of the loss with respect to persistence diagrams. Referring
to Eqs. (3.3) and (3.4), the i-th term of the loss, Li

topo, can be expressed as
Li
topo =

∑
x∈dgmi

|bx − bσ∗(x)| =
∑

x∈dgmi
sign(bx − bσ∗(x))(bx − bσ∗(x)). This

formulation relies on two key optimal mappings, π∗ and σ∗. The mapping
π∗ : Dsyn → Dreal determines the best alignment through optimal transport
between synthetic and real diagram sets, Dsyn and Dreal. Similarly, σ∗ provides
a 1D optimal transport solution between the points of matched diagrams,
mapping each point in dgmi to its counterpart in π∗(dgmi).

It is important to note that while the optimal transport plan (γ∗ in Eq. (3.5))
adapts continuously with modifications in the synthetic diagrams, the map-
pings π∗ and σ∗ generally remain constant except at singular points, which
form a set of measure zero. This constancy within a small neighborhood
around the input allows us to assume fixed values for π∗, σ∗, and consequently
for sign(bx − bσ∗(x)) and bσ∗(x).

Therefore, the gradient of the loss relative to the birth times in each point
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Figure 3.4: From top to bottom: the same synthetic image across various
iterations, its distance transforms, landscape views of the distance transforms,
and persistence diagrams. The red marker labeled s represents the saddle
point; its function value determines the birth time of the near-hole x.

x in dgmi is precisely given by:
∂Li

topo

∂bx
= sign(bx − bσ∗(x)), and

∂Li
topo

∂dx
= 0.

This gradient direction, specifically − ∂Li
topo

∂ dgmi

∂ dgmi

∂G
, propels each point x in

the synthetic diagram dgmi horizontally towards its optimally matched point
in the real diagram, σ∗(x), as depicted in Fig. 3.4, emphasizing horizontal
adjustments without vertical movement.

Derivative of the persistence diagram with respect to the distance
transform. Focusing on the derivative of the birth time bx with respect to
the distance transform fyi , we note that ∂bx

∂fyi
is crucial. Observationally, the

birth time bx of an incipient hole in a filtration corresponds to the value at the
saddle point sx of fyi , which can be described as bx = ⟨δsx , fyi⟩, where δsx is
the Dirac delta function centered at sx. Therefore, the gradient is simply δsx .

In practical terms, the negative gradient −∂Li
topo

∂bx
∂bx
∂fyi

∂fyi
∂G

aims to adjust the

function value at the saddle point bx = fyi(sx), either increasing or decreasing
it to align closer to the birth time bσ∗(x) of the corresponding point in the
matched real diagram, as depicted in Fig. 3.4.

Derivative of the distance transform with respect to the synthetic
image G(zi). The derivative of the distance transform fyi concerning the
synthetic image G(zi) captures the relationship between adjustments in the
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image and changes at the saddle point sx. To modulate the distance transform
value fyi(sx), it is necessary to affect the mask yi at its nearest boundary point
to sx, labeled as r. Alterations to the synthetic image near the pixels around r
will facilitate this change, leading to growth or reduction of the mask yi towards
the saddle point. This interaction, vital for guiding the evolution of the mask,
is supported by additional calculations provided in the supplementary material
and visual examples in Fig. 3.4.

3.2.4 Topology-Aware Metrics for GAN Evaluation

In this study, we introduce two innovative metrics designed to assess GAN
performance with a focus on the topological attributes of generated images.
Traditional methods like the Inception Score (IS) [163] and the Fréchet Incep-
tion Distance (FID) [167] rely on CNN-based image features extracted using
a pre-trained Inception network, which may not preserve the topological char-
acteristics of the images. This gap in evaluation motivates our development
of topology-centered metrics.

The first metric, termed the Betti Score, quantifies the topological vari-
ance by utilizing the Betti number, which represents the count of holes within
a mask. For both synthetic and real masks, histograms are computed and
subsequently compared using the χ2 distance, facilitating an intuitive yet pro-
found measure of topological disparity.

The second proposed metric leverages persistence diagrams, which cap-
ture both holes and near-holes, applying the kernel mean embedding method
[175]. By defining a kernel suitable for these diagrams, each set of persis-
tence diagrams—synthetic and real—is transformed into a vector in a Hilbert
space, H. The mean of these transformed sets is then computed as Φ(Dsyn) =
1

nsyn

∑nsyn

i=1 Φ(dgms
i ) and Φ(Dreal) = 1

nreal

∑nreal

i=1 Φ(dgmr
i ). The topological dis-

crepancy between the synthetic and real image sets is then quantified using
the Maximum Mean Discrepancy (MMD), defined as MMD(Dsyn,Dreal) =∥
Φ(Dsyn) − Φ(Dreal) ∥H. This metric directly addresses the topological dif-
ferences, offering a novel perspective on the efficacy and accuracy of GAN-
generated imagery in replicating real-world topological features.

It is established that the sample-based Maximum Mean Discrepancy (MMD)
converges to its theoretical counterpart, ensuring robustness and reliability for
practical applications. In our analysis, we utilize the unbiased version of MMD
as outlined in the supplemental material, based on the kernel mean embedding
framework [175].

For the kernel function applied to persistence diagrams, several options are
available, such as those discussed in recent studies [80, 81]. In this work, we
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employ a Gaussian kernel defined by the 1-Wasserstein distance between dia-

grams, formulated as kW1(dgmi, dgmj) = exp
(
−W1(dgmi,dgmj)

σ2

)
. This choice is

motivated by the Gaussian kernel’s effectiveness in capturing subtle differences
in topological features through the sensitivity of the 1-Wasserstein distance.

Our proposed metrics, the Betti Score and the unbiased MMD, are specif-
ically designed to assess the topological aspects of GAN-generated images.
These tools provide a novel perspective on evaluating the quality of GAN
outputs, complementing traditional measures such as the Fréchet Inception
Distance (FID). To demonstrate the utility of these metrics, we will evalu-
ate a TopoGAN model, analyzing its performance using FID, the unbiased
MMD, and the Betti Score. This comprehensive evaluation will highlight the
importance of considering topological properties in the assessment of GANs
and showcase the added value of our topologically-informed metrics.

3.3 Experiments

TopoGAN is an advanced model based on the Wasserstein GAN with Gradi-
ent Penalty (WGAN-GP) framework, utilizing Deep Convolutional Generative
Adversarial Networks (DCGANs) as its structural foundation. For a detailed
exposition of TopoGAN’s implementation, training methodology, and com-
putational considerations, refer to Section B of the supplemental material.
This model is assessed against two robust baseline GANs, namely WGAN-GP
and Wasserstein GAN with Spectral Normalization (WGAN-SN), which are
renowned for their ability to stabilize training and prevent mode collapse in
GAN frameworks.

Datasets. To validate the efficacy of TopoGAN, we deploy it across a diverse
set of datasets, each chosen to test different aspects of image segmentation
capabilities:

- CREMI and ISBI12 [176]: These datasets comprise neuron image seg-
mentation challenges. We utilize 7500 and 1500 patches of size 64x64, re-
spectively, extracted randomly from their segmentation masks to assess the
performance in biological image segmentation.

- Google Maps (scraped by [68]) and CMP Facade Database [177]:
These datasets include paired RGB images representing aerial photos to maps
and facades to labels, respectively. For our purposes, RGB images are con-
verted to grayscale, from which 4915 patches of size 64x64 are extracted from
the maps, and 606 facade labels are resized to 128x128 to facilitate the study
of urban image translation.

- Retina Dataset: Compiled from four distinct sources—IOSTAR (40

29



Table 3.1: Comparisons against baseline GANs on FID, unbiased MMD, and
Betti score across five datasets. The standard deviations are based on 3 runs.
We omit reporting unbiased MMD and Betti score of WGAN-SN on Retina
as WGAN-SN fails to produce reasonable results.

CREMI ISBI12 Retina Maps Facade

FID

WGAN-GP 21.64±0.138 83.90±0.718 179.69±19.008 72.00±0.469 122.13±0.822

WGAN-SN 34.15±0.153 78.61±0.411 269.12±2.276 175.52±0.217 126.10±1.901

TopoGAN 20.96±0.195 31.90±0.248 169.21±21.976 60.48±0.467 119.11±0.874

unbiased MMD

WGAN-GP 0.142±0.014 0.558±0.010 1.735±0.050 0.482±0.007 0.137±0.004

WGAN-SN 0.326±0.016 0.602±0.006 - 0.724±0.005 0.166±0.005

TopoGAN 0.134±0.019 0.405±0.003 1.602±0.114 0.471±0.010 0.080±0.002

Betti score

WGAN-GP 0.236±0.003 0.908±0.104 0.541±0.188 0.223±0.010 0.176±0.006

WGAN-SN 0.125±0.002 1.775±0.039 - 0.255±0.020 0.142±0.017

TopoGAN 0.015±0.001 0.802±0.058 0.457±0.144 0.177±0.004 0.124±0.002

images) [178, 179], DRIVE (20 images) [180], STARE (20 images) [181], and
CHASE DB1 (28 images) [182]—this dataset features 98 retina segmenta-
tions, each standardized to a resolution of 128x128. This dataset is crucial for
evaluating the performance in medical image segmentation.

TopoGAN’s performance is meticulously analyzed on these datasets to il-
lustrate its practical potential, particularly in segmentation tasks where topo-
logical accuracy is paramount. This comprehensive dataset approach not only
highlights TopoGAN’s robustness across different image types but also under-
scores its adaptability to varying segmentation challenges.

Quantitative and qualitative results. We present a comprehensive anal-
ysis of TopoGAN’s performance in comparison with two baseline models,
WGAN-GP and WGAN-SN, across three distinct metrics: FID, unbiased
MMD, and Betti score, as detailed in Table 3.1. The results underscore
TopoGAN’s superior capability in maintaining topological properties of the
generated images, evidenced by its notable outperformance in the topology-
centered metrics, unbiased MMD and Betti score, introduced in Sec. 3.2.4.
This enhancement confirms that the topological GAN loss incorporated in
TopoGAN effectively promotes structural and topological fidelity in the syn-
thesized images.
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Figure 3.5: Qualitative comparisons across five datasets show real masks, fol-
lowed by those generated by TopoGAN, WGAN-GP, and WGAN-SN. The
third row for each dataset displays textured images corresponding to the syn-
thetic masks above.
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Additionally, TopoGAN also exhibits improved performance in the FID
metric, suggesting that topological integrity not only preserves structural de-
tails but also aligns closely with human visual preferences in assessing image
quality. More detailed comparisons of image topological quality across various
training epochs are accessible in the supplemental material.

In Fig. 3.5, we display qualitative results using the same noise inputs to en-
sure fairness in comparing the different GAN methods. The masks generated
by TopoGAN showcase clear boundaries and complete cycles, closely mirror-
ing the topological characteristics of the actual data, as indicated by their
Betti numbers. Additionally, TopoGAN shows commendable performance in
rendering textures, which will be elaborated on later in the document. In con-
trast, the baseline models, WGAN-GP and WGAN-SN, often produce images
with fragmented structural elements.

The Retina dataset poses a significant challenge to all models due to its
limited size (only 98 images) and the intrinsic diversity in image geometry,
resolution, aspect ratio, and contrast, sourced from multiple datasets. De-
spite these challenges, TopoGAN’s ability to reproduce more accurate topolog-
ical features stands out, further affirming its efficacy in complex segmentation
tasks.

Segmentation application. TopoGAN’s utility extends beyond image gen-
eration to practical applications in binary segmentation tasks. To assess this,
we implemented a comparative study across multiple datasets where each
dataset was used to train a segmentation network under three different condi-
tions: using real training data, synthetic data generated by TopoGAN, and a
combination of real and synthetic data. This setup allowed us to evaluate the
effectiveness of synthetic data in enhancing segmentation performance when
integrated with real datasets.

Segmentation performance was quantified using three metrics: pixel accu-
racy, Dice score, and Adapted Rand Index (ARI), with detailed results for
the Dice score provided in Table 3.2 and additional metrics discussed in the
supplemental material.

To create synthetic training pairs, a pix2pix [68] network—trained on ac-
tual data pairs—was used to transform GAN-generated masks into textured
masks. These textured masks served as training inputs for a U-Net [183]
based segmentation network. This approach leverages the strength of U-Net
in handling spatial hierarchies and context, which is critical for accurate seg-
mentation.

We conducted a rigorous evaluation using three-fold cross-validation to en-
sure the robustness of our findings, reporting both the mean and standard
deviation of the Dice scores for the datasets involved. It’s important to note
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Table 3.2: Dice scores for segmentation networks tested on real data. Across
each dataset, we trained 21 segmentation networks using real training data,
synthetic data from TopoGAN and two baselines, and real data augmented
with synthetic data. Results show the mean and standard deviation from a
3-fold cross-validation.

CREMI ISBI12 Retina

Real data 0.896±0.004 0.932±0.011 0.883±0.010
WGAN-GP 0.820±0.018 0.927±0.005 0.891±0.012
WGAN-SN 0.827±0.019 0.902±0.008 -
TopoGAN 0.851±0.011 0.933±0.006 0.892±0.013

WGAN-GP+real data 0.897±0.008 0.943±0.007 0.899±0.010
WGAN-SN+real data 0.900±0.004 0.905±0.054 -
TopoGAN+real data 0.902±0.006 0.944±0.008 0.906±0.014

that the segmentation studies were limited to the CREMI, ISBI12, and
Retina datasets. The other datasets, namely Google Maps and CMP Fa-
cade Database, were excluded from this part of the study due to the absence
of ground truth data necessary for segmentation tasks.

This structured approach not only highlights TopoGAN’s potential in gen-
erating high-quality synthetic data that is useful for training segmentation
models but also showcases how such synthetic data can be seamlessly inte-
grated into existing workflows to improve segmentation accuracy across differ-
ent medical and biological imaging scenarios.

3.4 Literature Review: GANs, Diffusion Mod-

els, and TopoGAN

3.4.1 Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs) were first introduced by Ian Goodfel-
low et al. in 2014 [184]. GANs consist of two neural networks, a generator and
a discriminator, that are trained simultaneously through adversarial processes.
The generator creates fake data samples, while the discriminator attempts to
distinguish between real and fake samples. This setup leads to the generator
producing increasingly realistic data over time.

One of the significant advancements in GANs is the development of Deep
Convolutional GANs (DCGANs) [185]. DCGANs use convolutional layers to
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improve the quality of generated images and have become a standard archi-
tecture for image generation tasks.

Another notable advancement is the introduction of Conditional GANs
(cGANs) [186], which allow for the generation of data conditioned on specific
inputs. This makes it possible to generate images of a particular class or style,
significantly expanding the applicability of GANs.

The Wasserstein GAN (WGAN) [187] introduced a new loss function based
on the Wasserstein distance, addressing the problem of mode collapse and
improving the stability of GAN training. The WGAN-GP variant [188] further
enhanced this approach by incorporating a gradient penalty to enforce the
Lipschitz constraint.

In recent years, GANs have seen remarkable improvements in generating
high-resolution images. The Progressive Growing of GANs (ProGAN) [189]
and StyleGAN [190] architectures have set new benchmarks in image synthesis
by progressively increasing the resolution during training and introducing style
transfer capabilities within the network.

Recent works have also focused on improving the training dynamics and
efficiency of GANs. Techniques such as spectral normalization [191] and self-
attention mechanisms [192] have been proposed to stabilize GAN training and
enhance the generation quality, especially in complex datasets.

Furthermore, the application of GANs has expanded beyond image genera-
tion. GANs are now being used in diverse fields such as text-to-image synthesis
[193], 3D object generation [194], and even drug discovery [195].

3.4.2 Diffusion Models

Diffusion models have emerged as powerful generative models, particularly
noted for their ability to generate high-quality data through a process of grad-
ually denoising a sample from pure noise. The concept of diffusion probabilistic
models was first introduced by Sohl-Dickstein et al. in 2015 [196]. These mod-
els use a forward process to gradually add noise to data and a reverse process
to denoise it, thereby generating new samples.

A significant advancement in the field is the introduction of Denoising Dif-
fusion Probabilistic Models (DDPMs) by Ho et al. [197]. DDPMs use a specific
noise schedule and parameterization that result in high-quality sample gener-
ation. This model has set new benchmarks in image synthesis, demonstrating
superior performance over GANs in certain tasks.

The development of improved training techniques and architectures has
further enhanced diffusion models. Nichol and Dhariwal introduced improved
denoising diffusion probabilistic models [198], which incorporated a more flex-
ible noise schedule and improved model architectures, achieving even better

34



sample quality and faster training.
The application of diffusion models has expanded beyond image generation.

Song and Ermon proposed the concept of score-based generative models [199],
which unify score matching and generative modeling. This approach has been
successfully applied to various data modalities, including images and audio.

Another notable contribution is the work on continuous-time diffusion mod-
els by Song et al. [200], where the authors extended the framework to contin-
uous time, allowing for more flexible and potentially more powerful generative
models. This approach, known as Score-Based Generative Modeling through
Stochastic Differential Equations (SDEs), has opened new avenues for research
in generative modeling.

Recent advancements have also focused on improving the computational
efficiency of diffusion models. Techniques such as fast sampling methods [201]
and optimization strategies [202] have been proposed to reduce the computa-
tional cost while maintaining high sample quality.

Diffusion models have shown remarkable potential in various applications,
including text-to-image synthesis [203], image super-resolution [204], and even
molecular generation [205]. These models continue to evolve, with ongoing
research aimed at further enhancing their capabilities and expanding their
applicability.

3.4.3 TopoGAN

Multiplex immunofluorescence (MxIF) imaging relies heavily on effective cell
segmentation, which is challenging due to the use of multiple membrane mark-
ers that can vary in stain quality. Bao et al. proposes a deep learning-based
membrane segmentation method that aggregates information from large-scale
MxIF markers to improve topology preservation and segmentation accuracy,
significantly outperforming traditional methods in clDiceSKEL and ARI met-
rics [206]. Arnavaz et al. [207] addresses topological consistency in segmen-
tation and limited annotations in biomedical imaging by proposing a topo-
logical score to measure both topological and geometric consistency between
predicted and ground truth segmentations. The topological score is applied
to three scenarios involving U-net architectures, including a semi-supervised
approach that utilizes un-annotated data, demonstrating effectiveness in seg-
menting tubular structures in the fetal pancreas from noisy live imaging con-
focal microscopy.

Segmentation networks often fail to learn global invariants like object shape
and geometry when trained with standard loss functions. Ozcelik et al. in-
troduces a topology-aware loss function that uses persistent homology and
Vietoris-Rips filtration to penalize topological dissimilarities, improving seg-
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mentation accuracy by modeling both shape and geometry simultaneously
[208]. Experiments on 4327 CT images of aorta and great vessels demonstrate
the effectiveness of this approach, showing superior performance compared to
traditional methods.

In digital pathology, modeling the complex spatial context of cells is crucial
for accurate classification and cancer diagnosis. Abousamra et al. introduces
mathematical tools from spatial statistics and topological data analysis into a
deep generative model, using them as conditional inputs and a differentiable
loss to generate high-quality multi-class cell layouts [209]. The topology-rich
cell layouts improve data augmentation and enhance the performance of down-
stream tasks like cell classification.

To the best of the author’s knowledge, there are no existing works in the
literature that improve upon or extend TopoGAN. The works citing TopoGAN
primarily apply it to various tasks.

3.5 Conclusion

This study introduces TopoGAN, an innovative GAN methodology that explic-
itly focuses on learning the topological aspects of images from real data. We
have developed a unique topological GAN loss, demonstrating its differentiabil-
ity and seamless integration into standard GAN training processes. Alongside,
we have proposed novel metrics specifically designed to assess topological dis-
crepancies between generated and real images.

Empirical results from our study highlight TopoGAN’s superior perfor-
mance in capturing and replicating topological features compared to existing
state-of-the-art GAN models. Our evaluations, both quantitative and qualita-
tive, consistently show that images generated by TopoGAN maintain higher
topological fidelity. In segmentation tasks, TopoGAN with solely synthetic
data has shown results comparable to those obtained using real data, particu-
larly evident in the ISBI12 and Retina datasets. Moreover, when synthetic
data is used to augment real data, there is a marked improvement in segmen-
tation performance, underscoring the value of integrating synthetic data into
training workflows.

The integration of TopoGAN and real data consistently outperformed other
combinations, with WGAN-GP augmented with real data as a close second.
Comprehensive details regarding the evaluation metrics, the training proce-
dures for segmentation networks, and a complete set of results are available in
the supplementary materials.

This contribution is poised to set a new benchmark in the field of generative
modeling, particularly in applications where understanding and preserving the
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underlying topology of the data is crucial.
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Chapter 4

Topology-Guided CNN for
Breast parenchyma learning on
DCE-MRIs

4.1 Introduction

As the second application of persistent homology, this thesis utilizes topolog-
ical structures derived from persistent homology as approximations of breast
tissues to predict responses to breast cancer treatment. Breast cancer imag-
ing’s endeavor to precisely depict the intricacies of breast parenchyma, which is
subject to dynamic changes due to angiogenesis, radiation, and chemotherapy,
underscores a pivotal challenge. The deployment of 3D imaging technologies,
notably MRI, stands out as a crucial advancement in capturing these com-
plex transformations, offering profound implications for diagnosis, prognosis,
and the orchestration of treatment strategies. Historically, the focus within
cancer imaging research has gravitated towards the analysis of tumor tex-
ture and shape, inadvertently sidelining the rich data reservoir present in the
tumor microenvironment. This oversight neglects the critical diagnostic and
prognostic value embedded within the peritumoral stroma and parenchyma,
where phenotypic variations are fuelled by immune responses, vascularity, and
compositional diversity of the tissue. Notably, the patterns of fibroglandular
tissue and the enhancements within the parenchyma are indicative of breast
cancer risks and the efficacy of treatment protocols, emphasizing the need for
advanced quantitative tools that delve into the tumor milieu and its environs,
as observable in breast MRI scans.

The spectrum of methodologies proposed for the analysis of breast imagery
is broad. Radiomic strategies, for instance, distil diagnostic and prognostic
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(a) (b) (c)

Figure 4.1: (a): 3D visualization of a phantom breast, showcasing glandular
tissues (in white) and topological features (in blue); (b): Glandular tissues;
(c): Topological features.

markers from both the tumor and its adjacent peritumoral areas through the
lens of radiomic features [210, 211]. These features, though rooted in human-
derived insights, strive to quantify diverse aspects such as texture within and
around the tumor, geometrical attributes of vessels, among others. Despite
their intuitiveness, radiomic approaches are hampered by two primary draw-
backs: a shortfall in directly mapping the complex structural dynamics of the
peritumoral stroma and parenchyma, and a rigidity in the handcrafted fea-
tures that stifles their ability to capture the heterogeneous nature of breast
parenchyma adequately, thus limiting their practical predictive capabilities al-
beit their high interpretability.

Conversely, data-driven methodologies, particularly convolutional neural
networks (CNNs), have demonstrated substantial efficacy across various ana-
lytical domains by fostering an environment for end-to-end learning of feature
representations [106, 212–217]. Although applying CNNs directly to MRI data
presents a promising avenue [218–225], this approach is not without its chal-
lenges. Specifically, when the entirety of the MRI volume serves as the input,
there’s a risk of incorporating biologically extraneous or even misleading data
that could skew the model’s outcomes. Moreover, the architectural complex-
ity and parameter density of 3D CNNs necessitate a considerable volume of
training data — a requirement that often surpasses the feasible limits of con-
trolled clinical studies, such as the I-SPY1 trial [226]. An additional limitation
inherent to CNNs lies in the opacity of feature interpretability, as there is a
disconnect between the learned features and the tangible structures of breast
tissue they aim to represent.

In our study, we introduce TopoTxR, an innovative approach designed to
surmount the challenges previously discussed. This methodology leverages
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Figure 4.2: (a) A sample MRI image alongside radiomic features: (b) 3D
tumor shape, (c) intratumoral texture (Haralick entropy), (d) overall breast
texture (Haralick energy). Panel (e) presents topological structures identified
by TopoTxR, highlighting the fibroglandular tissue geometry.

the principles of topology to discern the structures of the breast parenchyma,
seamlessly integrating these sophisticated topological insights into deep con-
volutional neural networks (CNNs) to notably boost predictive accuracy. By
concentrating on the parenchymal structures, our strategy ensures that pre-
dictive outcomes are anchored in biological realities, thus markedly elevating
the efficacy of CNN models, even when training data is scarce.

At the heart of TopoTxR is the concept of persistent homology [113], a
mathematical framework adept at identifying 1D (loops) and 2D (bubbles)
topological features with a high degree of reliability [227]. These identified
features are reflective of the breast’s curvilinear tissue formations (such as
ducts and vessels) and the spaces encircled by tissues and glands. This ap-
proach stands in contrast to traditional radiomics, offering a more nuanced
and comprehensive view of the tumor microenvironment by providing a deeper
structural context. Given that these topological structures are derived through
unsupervised methods, the interpretative quality of these structures becomes
paramount. Utilizing the phantom breast imaging dataset from VICTRE
[228], we conduct both quantitative and qualitative evaluations to affirm that
the topological features we extract are indeed representative of actual breast
tissue structures. The visualization of these topological constructs, as show-
cased, effectively outlines the glandular textures within a phantom breast im-
age, offering a vivid illustration of our method’s capability to accurately model
the complex biological architecture of the breast.

In this work, we unveil a groundbreaking topology-guided deep learning
framework tailored for breast imaging analysis. Central to our methodology is
the innovative use of topological structures to refine the model’s focus towards
voxels in close proximity to these critical tissue formations. By narrowing the
attention to a select group of voxels with heightened biological significance,
our model achieves efficient training with a limited dataset of MRI scans.
Moreover, this focused approach opens avenues for linking the biological un-
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derpinnings of various breast pathologies to their topological representations
within tissue structures. Notably, our method enhances the predictive preci-
sion beyond what is achievable using Betti curves, as demonstrated in related
research by [119]. Betti curves, while useful, capture a narrower spectrum of
topological information, thus limiting their efficacy in comparison to the more
detailed topological constructs we employ.

Our topology-centric model is versatile, yet we particularly apply it to the
prediction of responses to neoadjuvant chemotherapy (NAC) in breast cancer
treatments. Accurately forecasting the pathological complete response (pCR)
before initiating NAC can avert inefficacious treatments, thereby sparing pa-
tients from undue distress and reducing healthcare expenditures. Through em-
pirical assessments on the I-SPY1 dataset [226] and an in-house proprietary
dataset, our approach, TopoTxR, consistently outshines various benchmark
models. This includes traditional radiomic methodologies, CNNs devoid of
topological insights, and other cutting-edge strategies, underscoring the supe-
rior predictive prowess of our topologically informed approach.

In encapsulating our contributions, we highlight the following key aspects: -
The adoption of persistent homology to delineate topological structures, offer-
ing a refined approximation of the breast’s fibroglandular tissue architecture.
- A thorough validation conducted with a phantom breast imaging dataset,
substantiating the fidelity of our topological extractions in mirroring actual
breast tissues. - The introduction of a topology-driven spatial attention mech-
anism that augments the focus and efficiency of 3D CNNs, thereby bolstering
their predictive accuracy.

By bridging the gap between traditional engineered imaging features and
fully autonomous data-driven CNN methodologies, our work presents a novel
pathway in the predictive analysis of breast DCE-MRI, specifically targeting
the prognostication of pCR.

4.2 Methodology

Our approach introduces a topological framework designed to significantly
enhance the analysis of breast DCE-MRI images, with the dual objectives of:
(1) extracting salient topological structures as precise representations of the
underlying tissue structures, and (2) leveraging these extracted topological
cues to inform and guide the training of a deep convolutional neural network
(CNN). This methodology is visually encapsulated in Fig. 4.3, illustrating our
comprehensive workflow.

The process begins with the identification of salient topological structures
within the input image, utilizing the foundational principles of persistent ho-
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Figure 4.3: Our TopoTxR pipeline: Persistent homology extracts 1D and 2D
topological features from breast MRI images. New images are created where
voxels within these features retain their original MRI intensity values, and all
other voxels are set to zero. Two images are generated, one each for 1D and
2D structures. These images are then processed by two separate 3D CNNs,
followed by a fully connected network for predicting pCR response.

mology [113]. We concentrate on the extraction of 1D and 2D topological
features, namely loops and bubbles, which are emblematic of significant tis-
sue structures. The 1D features, or loops, are adept at capturing curvilinear
structures such as ducts and vessels, integral to the organ’s vascular and struc-
tural framework. Conversely, the 2D features, or bubbles, highlight voids that
are encased by tissue and associated glands, further delineating spaces of in-
terest within the tissue matrix. These topological constructs are invaluable,
as they directly highlight tissue structures of paramount biological relevance.
Our hypothesis posits that concentrating on these specific structures and their
associated regions will furnish the model with contextually rich information
conducive to accurate prediction.

Building upon this foundation, we introduce a novel topological-cycle-
driven CNN architecture, meticulously designed to process MRIs alongside
the identified topological structures. This method involves masking the MRI
input in such a manner that only voxels corresponding to, or in the immedi-
ate vicinity of, the topological structures are retained for further processing.
Subsequently, a 3D CNN is trained using these strategically masked images.
This focused approach allows for effective model training even with a restricted
dataset, by honing in on regions proximal to the tissue structures of interest.

It is critical to note that we distinguish between two primary types of topo-
logical structures: loops and bubbles. Accordingly, our architecture incorpo-
rates two distinct 3D CNNs, each dedicated to one of these topological types.
The insights gleaned from each CNN are then amalgamated, feeding into a
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series of fully connected layers tasked with the binary classification challenge
of predicting pathological complete response (pCR) versus non-pCR. Empir-
ical evidence supports the assertion that both types of topological features
are indispensable, collectively contributing to a robust and nuanced structural
understanding that underpins superior predictive accuracy.

This section will proceed by elucidating the underlying theory of persistent
homology, followed by an introduction to the cycles that symbolize the topo-
logical structures under consideration. Finally, we will detail the operational
mechanics of our topological-cycle-driven CNN, setting the stage for a deeper
dive into the intricacies of this pioneering approach.

4.2.1 Background: Persistent Homology

In this foundational overview, we delve into the essence of persistent homol-
ogy, a pivotal concept in topological data analysis, which serves as a powerful
tool for uncovering and quantifying the inherent topological characteristics of
data. For those seeking a deeper dive into the subject, the seminal work by
Edelsbrunner and Harer [113] is an invaluable resource, offering comprehen-
sive insights into the theoretical underpinnings and applications of persistent
homology.
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Figure 4.4: Left to right: Synthetic image f , sublevel sets at thresholds b1 <
b2 < d2 < d1 (in black), and the 1D persistence diagram. A red loop, born at
b1 and dying at d1, and a green loop, born at b2 and dying at d2, represent 1D
topological features. These features correspond to the red and green points in
the diagram.

Persistent homology is adept at extracting the topological footprint of
a dataset observed through a scalar function. Given an image domain X
and a real-valued function f : X → R, one can construct sublevel sets
Xt = {x ∈ X : f(x) ≤ t}, where t acts as a dynamic threshold modulating the
evolution of these sets over time. This series of sublevel sets, X = {Xt}t∈R,
forms a filtration—a hierarchy of nested subsets of X that progressively reveals
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the emergence and dissolution of topological features such as connected com-
ponents, handles, and voids. The ”birth” of a topological feature is marked by
the threshold t at which it first appears in the filtration, whereas its ”death”
corresponds to the threshold at which it vanishes. The life-cycle of these fea-
tures, from inception to dissolution, is meticulously cataloged in a persistence
diagram, a scatter plot where each point (b, d) represents a feature with birth
time b and death time d.

An illustrative example is provided in Fig. 4.4, showcasing how an example
function f and its sublevel sets at varying thresholds lead to the creation
and subsequent destruction of handles—topological structures represented as
loops within the diagram. Each handle corresponds to a dot in the persistence
diagram, positioned according to its birth and death times, offering a visual
summary of the topological evolution captured by persistent homology. The
”persistence” of a dot, the interval between its birth and death, quantifies the
endurance of the corresponding topological feature within the dataset.

4.2.2 Persistence Cycles and Their Computation

Building upon this foundation, we introduce the concept of persistence cycles,
geometric manifestations of the topological structures unearthed by persistent
homology. These cycles, depending on their dimensionality (1D or 2D), rep-
resent loops or bubbles—each encapsulating essential aspects of the dataset’s
topological anatomy at the moment of their emergence. For instance, the loops
depicted in Fig. 4.4 symbolize handles at their respective birth times, serving
as tangible markers of the dataset’s topological characteristics.

This exposition sets the stage for a deeper exploration of the computational
techniques employed to identify and analyze these persistence cycles, offering
a window into the intricate dance of topology that unfolds within complex
datasets.

In the detailed exploration of topological data analysis within the context of
image domains, we encounter a discrete landscape composed of vertices (akin
to voxels), edges (which connect vertices), squares, and cubes. These elements
are categorized by their dimensionality—vertices as 0-dimensional, edges as
1-dimensional, squares as 2-dimensional, and cubes as 3-dimensional entities.
Collectively, a group of p-dimensional cells is termed a p-chain, serving as the
building blocks for constructing complex topological structures.

The concept of a boundary operator is pivotal in understanding the ar-
chitecture of these p-chains. For a given p-cell, σ, the boundary operator
identifies its (p − 1)-dimensional faces. The boundary of an edge, therefore,
consists of its two endpoint vertices; a square’s boundary is defined by the four
edges that enclose it, and similarly, a cube’s boundary is determined by the six
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squares that form its exterior. The boundary of a p-chain, c, is mathematically
expressed as ∂(c) =

∑
σ∈c ∂(σ), where the summation operates under mod-2

arithmetic, highlighting the combinatorial nature of these constructions.
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Figure 4.5: (a) Cubical complex example with cells ordered by function values.
(b) 2D boundary matrix ∂. (c) Reduced boundary matrix. (d) Persistence
diagram showing cycles corresponding to ∂. (e) 1D boundary matrix.

A p-chain assumes the status of a p-cycle when it encapsulates an empty
boundary, representing a closed loop or shell devoid of any gaps. Such p-cycles
constitute the null space of the boundary operator, essentially forming the
kernel of this linear transformation. The equivalence of different cycles delin-
eating the same topological structure—termed a homology class—underscores
the flexibility in representing topological features within this framework. Each
persistent homology class, visualized as a dot in the persistence diagram, can
thus be represented by any one of its constituent cycles that emerge at the
class’s birth.

The representation of topological features by cycles is not rigidly fixed;
various cycles can equivalently characterize the same homology class, offer-
ing multiple perspectives on the underlying topological essence. A pertinent
aspect of this representation involves selecting the most concise representa-
tive cycle for each feature, typically the cycle with the minimum number of
edges, to efficiently encapsulate the topological information. While the focus
of this paper is on establishing a foundational approach for selecting standard
representative cycles, the optimization for the shortest cycle remains an area
earmarked for future exploration, as suggested by research aiming at heuristic
and optimal cycle representations [84, 229]. This consideration opens avenues
for refining the computational efficiency and interpretability of topological
features extracted from image data, paving the way for more nuanced and
effective applications in image analysis and beyond.
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4.2.3 Computation of Persistent Homology and Repre-
sentative Cycles

We initiate the process with a filtration function applied to a discretized repre-
sentation of the image domain. An illustrative example of such a discretization
for a 2D image is provided in Fig. 4.5(a), where we first organize all cells in as-
cending order based on their corresponding function values. The computation
of persistence diagrams then proceeds by constructing boundary matrices, ∂p,
which map p-cells to their boundaries. An instance of the 1D and 2D boundary
matrices for the specified complex and its filtration is showcased in Fig. 4.5,
with the 1D boundary matrix effectively acting as the incidence matrix of the
graph depicted in Fig. 4.5(e).

High-dimensional boundary matrices are defined in a similar manner, for
example, the 2D boundary matrix illustrated in Fig. 4.5(b).

The persistence diagram is derived through the reduction of the boundary
matrix, a process reminiscent of Gaussian elimination but tailored to pre-
vent row or column perturbation. This reduction involves column operations
on ∂ from left to right, with the reduced 2D boundary matrix presented in
Fig. 4.5(c).

Upon the reduction of boundary matrices, each non-zero column signi-
fies a persistent dot within the diagram, where the column itself embodies
the cycle representing the associated topological structure. Our investigation
encompasses both 1D and 2D cycles, corresponding to loops and bubbles, re-
spectively. These extracted cycles are instrumental in directing 3D CNNs for
subsequent analysis.

The computational effort required to derive topological cycles is commen-
surate with that of calculating persistent homology. Theoretically, this com-
putation demands O(nω) time, where ω ≈ 2.37 denotes the exponent in matrix
multiplication time—specifically, the time needed to multiply two n × n ma-
trices. Here, n represents the number of voxels within an image. Practically,
computing all cycles for an input image of size 2563 takes approximately 5
minutes, as cited by [230].

4.2.4 Enhanced 3D CNN Leveraging Topological In-
sights

In the initial discussions within Section 4.2, we introduced the concept be-
hind our enhanced 3D Convolutional Neural Network (CNN) that incorporates
topological data for improved analysis. Here, we delve into the more nuanced
aspects of this methodology.
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The foundational step involves modifying the MRI image representation
through the application of an inversion function f = −I. This inversion
ensures that areas of significant tissue structures are highlighted by assign-
ing them lower intensity values, facilitating their identification in subsequent
analyses. Following this inversion, our focus shifts to the identification of
topological cycles within the persistence diagram that exhibit substantial per-
sistence. It is widely accepted in the field that features associated with lower
persistence are predominantly noise artifacts; thus, our selection process pri-
oritizes cycles with higher persistence. These are deemed to embody the most
critical structures, accurately reflecting genuine tissue configurations. The se-
lection threshold for these cycles is determined by a hyperparameter, which is
finely adjusted based on empirical evidence.

Subsequently, we construct two distinct binary 3D masks, each correspond-
ing to either 1D or 2D topological cycles identified earlier. These masks un-
dergo a slight dilation process to not only encompass the identified struc-
tures themselves but also their immediate surroundings, thereby capturing
a more comprehensive view of the area of interest. Rather than employing
these masks in their binary form for the prediction of pathological complete
response (pCR), we opt to reintegrate the original intensity values of the fore-
ground voxels within these masks. This approach effectively utilizes the cycle
masks to highlight relevant areas within the MRI images, as illustrated in the
Topological Structure Masking segment depicted in Fig. 4.3. Masked images
generated for both 1D and 2D cycles are then fed into their respective CNNs
for further processing. To ensure uniformity, all masked MRIs are standard-
ized to a dimension of 256 × 256 × 256.

Our analytical framework employs two parallel CNNs, each designed to
handle the data derived from cycles and bubbles separately, yet sharing a
common architectural blueprint. This architecture comprises five layers of
3D convolution, succeeded by layers of batch normalization and LeakyReLU
activation. The feature maps generated by these convolutional networks are
then merged and transformed into a cohesive feature vector. This vector subse-
quently navigates through a fully connected network, consisting of three layers,
culminating in the final pCR prediction. The inclusion of ReLU activation,
batch normalization, and a dropout layer (positioned within the second fully
connected layer) ensures robustness and generalization of the model. Training
of the integrated network model employs a stochastic gradient descent (SGD)
optimizer alongside a cross-entropy loss function, emphasizing an end-to-end
training approach that harmonizes all components towards achieving superior
predictive performance.
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Table 4.1: Comparison of proposed method vs. baseline methods across four
metrics: accuracy, AUC, specificity, sensitivity. Last row p-values calculated
between baseline MRI and TopoTxR.

Accuracy AUC Specificity Sensitivity

Without Feature Selection

Radiomics 0.517±0.086 0.536±0.098 0.557±0.058 0.477±0.176
PD 0.529±0.071 0.537±0.078 0.543±0.075 0.515±0.151

Radiomics+PD 0.533±0.080 0.538±0.095 0.567±0.065 0.5±0.175

With Feature Selection

Radiomics 0.563±0.085 0.593±0.098 0.552±0.180 0.575±0.081
PD 0.549±0.081 0.567±0.097 0.551±0.167 0.547±0.071

Radiomics+PD 0.563±0.093 0.587±0.099 0.592±0.178 0.534±0.087

3D CNN

MRI 0.633±0.200 0.621±0.102 0.570±0.322 0.673±0.354
TopoTxR (MRI+Topo) 0.851±0.045 0.820±0.035 0.736±0.086 0.904±0.068

p-value 0.0625 0.0625 0.3750 0.1875

4.3 Experimental Results

We conducted an assessment of our proposed methodology on the challenge of
pCR prediction, utilizing the ISPY-1 post-contrast DCE-MRI dataset [226].
This dataset includes a cohort of 162 patients, among which 47 achieved pCR
(average age = 48.8 years) and 115 did not achieve pCR (average age =
48.5 years). The evaluation framework was structured around a 5-fold cross-
validation approach. Metrics for evaluation comprised accuracy, area under
the curve (AUC), specificity, and sensitivity, with reporting on both the mean
and standard deviation for these metrics.

In the optimization phase, critical hyperparameters such as the learning
rate, momentum, weight decay factor, batch size, and dropout rate were fine-
tuned through a grid search mechanism. This search was conducted within a
3-fold cross-validation on a selectively held-out validation subset.

The performance of our approach was benchmarked against various es-
tablished methods: - Radiomics: A radiomic signature encompassing 92 di-
mensions was computed [231], focusing exclusively on features extracted from
the tumor region. A classifier was subsequently trained on this signature. -
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Table 4.2: Ablation study results. All numbers are reported from 5-fold cross
validations.

Accuracy AUC Specificity Sensitivity

Persistence Threshold

90% Remain 0.826±0.069 0.783±0.063 0.675±0.1115 0.891±0.084
60% Remain 0.851±0.021 0.793±0.028 0.647±0.073 0.939±0.017

Dimension

Dimension 1 0.718±0.068 0.697±0.025 0.639±0.149 0.754±0.161
Dimension 2 0.756±0.036 0.691±0.013 0.520±0.116 0.863±0.103

Dilation Radius

Radius 2 0.721±0.036 0.673±0.024 0.569±0.037 0.777±0.055
Radius 4 0.677±0.023 0.603±0.007 0.442±0.063 0.764±0.054
Radius 8 0.646±0.034 0.569±0.040 0.399±0.057 0.737±0.033

PD: Features based on the persistence diagrams (PDs) of input MRI images
were used to train a classifier. While several classifier options were explored,
the sliced Wasserstein kernel distance was employed for PDs as a feature vec-
tor [81]. - Radiomics+PD: This approach integrated features from both the
radiomic signature and PDs, with a classifier trained on the combined feature
set. - With feature selection: Feature selection techniques, specifically Mu-
tual Information Difference (MID) and Mutual Information Quotient (MIQ),
were applied to all methods mentioned above. An exhaustive search among
various combinations of feature selection schemes and classifiers (including
Random Forests, Linear Discriminant Analysis, Quadratic Discriminant Anal-
ysis, and SVM) was conducted to identify optimal configurations. The most
favorable outcomes are reported. - MRI: A direct application of a 3D CNN
to the original DCE-MRIs was also evaluated.

Quantitative results. The integration of Radiomics and PD features exhib-
ited enhanced performance when combined with a Random Forest classifier,
as detailed in Table 4.1. It was noted that the straightforward implementation
of a 3D CNN (referred to as the MRI method) underperformed, likely due to
the limited size of the dataset. Our novel approach, TopoTxR (MRI+Topo),
surpassed all compared baseline methodologies in effectiveness. Given the
dataset’s inherent imbalance, we also present the specificity and sensitivity
metrics for each classifier. Future investigations will aim to further mitigate
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Figure 4.6: Qualitative analysis of patients with and without pCR. First col-
umn shows breast DCE-MRI slices with tumors highlighted in orange (tumor
masks not used in TopoTxR creation). Columns 2-4 depict 3D visualizations
of topological structures from various angles, with 1-D (loops) in blue and
2-D (bubbles) in red. Top row indicates absence of pCR; bottom row shows
presence of pCR. Rightmost column presents the cumulative density function
of the birth times of topological structures.

the effects of data imbalance.

Ablation study. The concept of persistence within topological data analy-
sis—defined as the lifespan from a structure’s emergence to its dissolution—serves
as a filter to exclude transient structures, typically attributed to noise, that
might otherwise detract from the analysis’s accuracy. We examined the in-
fluence of varying persistence thresholds, setting these so as to retain 90%,
60%, and 30% of the topological structures, respectively. As indicated in Ta-
ble 4.2, the preservation of 30% of the structures (as also referenced in the
results for TopoTxR in Table 4.1) facilitates an optimal balance, enhancing
the relevance and impact of the retained topological features. Furthermore,
evaluations were conducted to gauge the predictive value of using exclusively
1D (loops) or 2D (bubbles) structures. While each demonstrated superiority
over baseline models, neither approached the efficacy of the comprehensive
TopoTxR approach, underscoring the complementary nature of the 1D and
2D topological information. An additional aspect of our analysis involved the
exploration of the effects of dilation applied to the topological structure masks,
with optimal outcomes achieved in the absence of any dilation. The reported
performance of TopoTxR in Table 4.1 reflects the implementation with 30%
of the structures maintained, leveraging both 1D and 2D structures, without
any dilation.
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4.3.1 Discussion and TopoTxR Feature Interpretation

The topological structures identified by TopoTxR provide meaningful repre-
sentations of breast tissue configurations, essential for interpreting learning
outcomes and generating novel biological insights. These insights derive from
focusing the analysis directly on the topological features and their surrounding
areas.

Fig. 4.6 displays topographical representations of the topological struc-
tures identified by TopoTxR, offering different perspectives for a representa-
tive DCE-MRI scan from each patient group. Observations reveal that the
structures (both 1D and 2D) tend to be sparse in cases exhibiting pathological
complete response (pCR) and relatively dense in non-pCR cases. In the accom-
panying MRI images, it is noted that the breast with pCR exhibits scattered
fibroglandular density with minimal background parenchymal enhancement.
Conversely, the non-pCR breast displays a more heterogeneous fibroglandular
density coupled with moderate background parenchymal enhancement. These
observations suggest that the features extracted by TopoTxR adeptly cap-
ture the intricate fibroglandular structures, potentially serving as indicators of
treatment response.

Further analysis focuses on comparing the topological behavior between
the two patient groups. Given that the imaging is processed using an inverted
function f = −I, the birth time of a topological structure, which typically de-
notes the threshold at which a cycle appears, inversely reflects the brightness of
the structure. In Fig. 4.6 (right), the cumulative density function (CDF) of the
birth times for the topological structures from pCR (depicted in red) and non-
pCR (depicted in blue) patients is plotted. The CDFs illustrate that the tissue
structures in pCR patients generally manifest as less bright (or less visible)
compared to those in non-pCR patients, corroborating the qualitative obser-
vations previously mentioned. A Kolmogorov-Smirnov test [232] conducted
to statistically compare these CDFs yielded a p-value of 0.0002, confirming a
significant distinction in the distribution of the birth times between the pCR
and non-pCR groups, thereby reinforcing the potential of TopoTxR features
as predictors of therapeutic efficacy.

4.4 Literature Review: TopoTxR

In breast radiology, predicting pathological Complete Response (pCR) after
neoadjuvant chemotherapy is crucial for personalized treatment and prognosis.
Du et al. introduce a technique that uses persistent homology to extract multi-
dimensional topological representations from 3D data, significantly speeding
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up computation [233]. The extracted topological information is distilled into
deep neural networks using response-based knowledge distillation, improving
pCR prediction accuracy from 85.1% to 90.5% and reducing computation time
by 66% on a public breast DCE-MRI dataset.

Modern deep neural networks excel in medical image analysis but often
overlook key anatomical structures like connected components and loops. Peng
et al. introduce PHG-Net, a persistent homology-guided approach that incor-
porates topological features into medical image classification [234]. By com-
puting cubical persistence diagrams and extracting topological features with a
lightweight PH module, which is then fused with feature maps from CNNs or
Transformers, PHG-Net enhances the classification performance. Evaluations
on three public datasets show significant improvements over state-of-the-art
methods.

Precision medicine aims to provide personalized care based on individ-
ual patient characteristics rather than generalized therapies. Radiomics and
pathomics extract qualitative and quantitative data from radiology and pathol-
ogy images, respectively, but can be enhanced by incorporating mathematical
methods from differential geometry and algebraic topology. Geometry offers
precise local measurements, such as curvature, to identify abnormalities, while
topology captures essential features like connected components and holes, pro-
viding a robust shape descriptor. Integrating these mathematical tools can
lead to more nuanced diagnostics and a comprehensive understanding of med-
ical images, advancing the field of precision medicine [235].

Incorporating scientific research into clinical practice via clinical informat-
ics, including genomics, proteomics, bioinformatics, and biostatistics, enhances
patient treatment. Computational pathology, a growing subspecialty, aims to
integrate whole slide images, multi-omics data, and health informatics, playing
a crucial role in cancer diagnosis. Iqbal et al. review existing computational
and digital pathology methods for breast cancer diagnosis, with a focus on
deep learning [236]. It covers public datasets, existing deep learning methods,
and publicly available code repositories, concluding with challenges and future
directions for deep learning-based diagnosis.

4.5 Conclusion

In this study, we introduce a pioneering topological biomarker, TopoTxR,
which harnesses the substantial geometric data intrinsic to structural MRI
to enhance the efficacy of convolutional neural networks (CNNs). Utilizing
the principles of persistent homology, we extract meaningful 1D cycles and 2D
bubbles from breast DCE-MRIs. These topological structures are strategically
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employed to focus the neural networks’ attention, optimizing the analysis and
interpretation of the imaging data. Our findings robustly demonstrate that
TopoTxR, when applied to treatment-naive imaging, effectively predicts the
pathological complete response (pCR), underscoring its potential as a sig-
nificant advancement in the realm of medical imaging and cancer treatment
prediction. This approach not only enhances the predictive accuracy but also
contributes to a deeper understanding of the underlying biological processes,
potentially guiding more personalized and effective treatment strategies.
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Chapter 5

Hardware Acceleration of
Boundary Matrix Reduction

5.1 Introduction

The second part of this thesis focuses on the computation of persistent homol-
ogy. Initially, we introduce a hardware design aimed at accelerating boundary
matrix reduction.

The realm of Topological Data Analysis (TDA) delves into understanding
data’s inherent topological features—such as connected components, tunnels,
and voids—that offer a holistic, intuitive depiction of data characteristics. At
the core of TDA, the concept of persistent homology [2, 113] stands out by
mapping the evolution of data’s topological features across various scales via
a filter function. This function, which could be an image’s intensity or a
density measure, allows for the exploration of sublevel sets—regions under a
predefined threshold value. Persistent homology examines these sets across
a range of thresholds, forming a filtration, and observes the emergence and
dissolution of topological features. The cumulative insights from this analysis
are represented in a persistence diagram, plotting the lifespan of these features
on a bidimensional plane, marking their inception and resolution times.

An illustrative case is provided in Fig. 5.1, showcasing the application of
persistent homology to an image from the MNIST dataset [237]. Here, the
evolution of the digit ”8” through various threshold levels (t0 to t6) is captured,
revealing the formation and subsequent filling of its upper and lower loops at
different stages. This example not only demonstrates the power of persistent
homology in capturing significant topological changes but also emphasizes its
potential for a deeper understanding of complex data structures.

Recent years have seen the advent of topology-inspired methodologies which
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Figure 5.1: Illustration of a persistence diagram (bottom right) calculated from
an image (bottom left) extracted from the MNIST dataset. The inverse of the
initial image serves as the input. Displayed in the top row are the sublevel
sets and the filtration process.

have found successful application across a broad spectrum of domains. These
include, but are not limited to, molecular biology [238, 239], signal processing
[240], sensor network design [241], robotics [242], shape recognition [243], com-
puter graphics [244], and geometric modeling [245]. In the realm of biomedical
image analysis, such topological techniques have been employed to investigate
the overarching structures within both structural and functional MRI datasets
[246–248]. By their very nature, topological invariants offer robustness against
noise and deformation, ensuring the preservation of topological features with-
out alteration through stretching or compressing. A particularly valuable char-
acteristic of persistence diagrams is their Lipschitz continuity relative to the
filter function that generates them [171], underscoring their stability and reli-
ability in representing the topological attributes of data.

The structure of this document is laid out as follows: Section 2 introduces
the foundational aspects of persistent homology theory. In Section 3, we delve
into the specifics regarding the boundary matrix and the process of bound-
ary matrix reduction. The subsequent Section 4 unveils a hardware-centric
solution designed to significantly expedite the reduction process. We then
scrutinize the efficacy of our proposed hardware solution through performance
assessments conducted on two distinct datasets: MNIST and The Mammo-
graphic Image Analysis Society (MIAS) [249]. For demonstrative purposes,
the MIAS dataset undergoes a reduction in resolution from 1024 × 1024 to
32× 32, whilst preserving the original aspect ratio.
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Figure 5.2: The 1−dimensional boundary matrix, ∂1, is derived from the sim-
plicial complex showcased in the top left of Fig. 2.3, which also includes a
defined filter function. In ∂1, rows are associated with vertices (0-simplices)
and columns with edges (1-simplices). The initial steps of the boundary matrix
reduction are illustrated, with the reduction halting at R1, which represents
the reduced outcome of ∂1.

The section on Persistent Homology introduces fundamental concepts nec-
essary for understanding the core ideas of this paper, focusing on simplices,
simplicial complexes, boundary operators, and filtrations. Due to space con-
straints, detailed discussions on cycles, chain groups, and homology groups are
omitted, with readers directed to [113, 250, 251] for comprehensive informa-
tion.

Simplicial complex

Defined within the framework of this study is the concept of a d-dimensional
simplex, σ, which represents the convex hull formed by d+ 1 affinely indepen-
dent vertices. For 3D datasets, the entities of 0-, 1-, 2-, and 3-dimensions are
identified respectively as vertex, edge, triangle, and tetrahedron (illustrated in
the top right of Fig. 2.3). A simplicial complex, K, is characterized as a finite
collection of simplices that adhere to two primary conditions: (1) every face
of a simplex within K also belongs to K, and (2) the intersection of any two
simplices in K is either null or a shared face of both simplices.

Boundary Operator Definition

The boundary operator conceptually unravels a d-dimensional simplex into its
constituent (d − 1)-dimensional faces. For instance, the boundary of an edge
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(considered a 1-simplex) is represented by the union of its endpoint vertices
(0-simplices). Similarly, a triangle’s boundary is composed of its enclosing
edges, while a tetrahedron’s boundary encompasses the surrounding triangles.
This operation, applied to simplicies, effectively breaks down a d-simplex into
a collection of (d − 1)-simplicies, as visually demonstrated in the secondary
row of Fig. 2.3, where boundaries of 1-, 2-, and 3-dimensional simplicies are
elucidated.

Filtration

The concept of Filtration emerges from considering a topological space X
and a real-valued function f defined over X, facilitating the construction of
sublevel sets Xt = {x ∈ X : f(x) ≤ t}, where t represents a threshold dictating
the evolution of sublevel sets. This process initiates with an empty set and
progressively encompasses the entirety of the topological space X as t advances
from −∞ to +∞. The resultant ordered series of sets, evolving in response to
the increment in t, is recognized as a filtration induced by the function f .

Algorithm 1 Boundary matrix reduction

1: procedure Initialization
2: R← boundary matrix ∂
3: lowR()← −1
4: for i = 1 to n do
5: if column i has 1 then
6: lowR(i)← row index of the last 1 in column i of R

7: endif
8: endfor
9: for i = 1 to n do
10: while ∃i′ < i with lowR(i

′
) = lowR(i) do

11: add column i
′

to column i
12: update lowR(i)
13: endwhile
14: endfor

5.2 Boundary Matrix Reduction

The computation of the persistence diagram necessitates a filter function as-
signed to simplicies. Illustrated in the top left of Fig. 2.3, filtration function
values are annotated adjacent to their respective simplicies, such as vertices,
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Figure 5.3: Left: architecture of the proposed hardware implementation of
boundary matrix reduction. Right: example Col SRAM updates of the first
reduction step in Fig. 5.2.

edges, and faces. Sorting these simplicies typically by ascending filter function
values facilitates the creation of a boundary matrix ∂. This binary matrix
encodes the boundary operator, where an entry ∂(u, v) = 1 signifies that the
simplex σu, corresponding to row u, constitutes part of the boundary of sim-
plex σv, associated with column v.

The goal of boundary matrix reduction is to transform ∂ into another
binary matrix R, employing column-wise operations on ∂. Each step involves
the modification of a current column by adding it to a previously reduced
column to its left, iterating from left to right until the reduction criteria are
met. Specifically, the process concludes either when the rightmost column of
R minimizes the row index of its last non-zero entry or when that column itself
becomes entirely zero. For clarity, we introduce lowR(i) as the notation for
the row index of the lowest non-zero entry in column i of R, or −1 if column i
is entirely zero. To reduce a column i, we search for another column j where
lowR(i) = lowR(j) and j < i, and proceed to add column j to column i until
either column i becomes zero or no suitable column j can be found. Note that
these additions are performed under Z2 arithmetic, meaning that 1 + 1 = 0.

For illustrative purposes, we consider the reduction of the 1-dimensional
boundary matrix ∂1, derived from the simplicial complex shown in the top left
of Fig. 2.3. The initial steps of this reduction process are visualized in Fig.
5.2, culminating in the reduced matrix R1. Here, lowR1(i) ̸= lowR1(j) for any
two distinct non-zero columns i and j, as depicted in the lower right of Fig.
5.2. The pseudo-code for this boundary matrix reduction process is presented
in Algorithm 1, commencing with an initial scan of the boundary matrix to
assign appropriate indices to lowR() (executed in the first for-loop), followed
by the reduction steps as previously outlined.
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5.3 Innovative Hardware Solution for Bound-

ary Matrix Optimization

In the quest for efficient computation of the persistence diagram, Section 3
elucidates the complexity involved in reducing a boundary matrix, which is
replete with columnar manipulations. Such operations are not only resource-
intensive but also become increasingly cumbersome with the growth of the
boundary matrix size. This enlargement exacerbates the frequency of cache
misses during the reduction phase, thereby elevating the challenges associated
with memory management during computational processes. Furthermore, the
task of identifying pairs of columns i and j, where lowR(i) = lowR(j), escalates
into a significant hurdle, amplifying the computational and power demands
on both the software and hardware fronts. To address these bottlenecks, this
section introduces a groundbreaking hardware accelerator designed specifically
for streamlining the boundary matrix reduction. This pioneering solution holds
the promise of catapulting the processing speeds by an unprecedented factor of
20,000 to 30,000, showcasing remarkable efficiency enhancements on datasets
such as MNIST and MIAS.

The subsequent paragraphs will delve into the operational intricacies of
each component within the proposed hardware architecture, as delineated in
Fig. 5.3.

1. Memory: the memory module stores boundary matrix. Currently, only
on-chip SRAM is considered. The architecture can be easily extended
to DRAM when applied to a larger dataset.

2. Col SRAM1: Col SRAM1 stores the index of the lowest 1 in each column
(i.e. lowR()).

3. Col SRAM2: Col SRAM2 stores the number columns which share the
same lowR().

4. Main Controller: the main controller module is responsible for the control
of the entire hardware including reading and writing of the SRAMs.

5.4 Optimization of Boundary Matrix Reduc-

tion Through Hardware Acceleration

This section presents an illustrative example of the initial step in boundary
matrix reduction as depicted in Fig. 5.2, with operational flow detailed in Fig.
5.3. Specifically, Col SRAM1 represents the index of the lowest 1 in column
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Table 5.1: Comparisons of processing time between software and hardware
implementations.

Dataset Dimensions SW Runtime HW Runtime HW/SW Speedups

MNIST
2-dim 2224 ms 1.10 ms 2022x
1-dim 2639 ms 0.13 ms 20300x

MIAS
2-dim 4087 ms 1.51 ms 2706x
1-dim 4816 ms 0.22 ms 21891x

i (denoted as lowR(i)), and Col SRAM2 tracks the count of columns sharing
identical lowR() values. As the boundary matrix reduction unfolds, these
SRAMs are updated in tandem, significantly reducing the search duration for
eligible column pairs due to the pre-stored data within the SRAMs.

For the practical realization of this hardware mechanism, the Memory mod-
ule incorporates 24 SRAM units, each boasting a capacity of 1536 entries of
32-bit width. This circuitry is fabricated using advanced 28 nm CMOS tech-
nology, designed to occupy a minimal area of 0.5 mm2 while consuming a
modest 20 mW of power at an operational frequency of 1 GHz.

To evaluate the efficacy of this hardware solution, 10 instances from both
the MNIST and MIAS datasets were subjected to software and hardware-
based reduction for 1− and 2− dimensional boundary matrices. The software
implementation, denoted as SW in Table 5.1 for simplicity, was developed
in C++ and compiled under a 64−bit Windows environment using Visual
Studio 2015. This baseline software accepts filtration matrices as input to
generate reduced boundary matrices as output. The performance metrics, as
shown in Table 5.1, were derived from a computing environment equipped
with an Intel Core i7-9700K 3.6GHz CPU and 8GB DDR4 RAM. The table
aggregates the runtime data across 10 samples for each dataset, highlighting
the remarkable acceleration achieved with the hardware solution, particularly
for 1-dimensional boundary matrices, thereby showcasing the transformative
potential of dedicated hardware accelerations in the computation of persistence
homology.
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Chapter 6

Efficient Computation of Euler
Characteristic Curves with
GPU on Image Data

6.1 Introduction

In this section of the thesis, we propose an endeavor to accelerate the com-
putation of the Euler characteristic curve, a simple yet powerful topological
descriptor.

Topological Data Analysis (TDA) represents an innovative field where
datasets are scrutinized using topological instruments, primarily persistent
homology, to describe the multifaceted shapes data can take. This method-
ological approach distinguishes itself by examining data across various scales
rather than confining its analysis to a single scale. It achieves this through the
concept of a filtration, a technique that chronicles the evolution of data shapes
by progressively analyzing their structure at increasing granularity levels. Fil-
trations adapt to the data type at hand, employing Alpha-shape filtration for
point-cloud data situated in three-dimensional space, Vietoris–Rips filtration
for analyzing high-dimensional metric data through pairwise distances, and cu-
bical filtration for exploring two- or three-dimensional grayscale imaging data.
Amidst the expanding applicability of TDA methods, our focus sharpens on
imaging data, acknowledging the promising advancements persistent homol-
ogy has made in recent years as documented by several studies [9, 23, 32, 252].

At the core of these advancements, persistent homology emerges as a pro-
found topological descriptor, offering unparalleled insights into the filtration-
based analysis of data. Its integration with cutting-edge deep learning method-
ologies has unveiled potential for a symbiotic relationship, although chal-
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lenges persist. The seamless fusion of persistent homology with deep learning
paradigms remains elusive; a significant hurdle is the demanding computa-
tional resources and extensive processing time required for persistent homol-
ogy calculations on practical datasets. This contrasts starkly with the stream-
lined, highly optimized computations that characterize modern deep learning
pipelines, many of which harness the parallel processing prowess of graphical
processing units (GPUs) to realize neural network architectures and facilitate
large-scale simulations. The sophistication of existing software for persistent
homology lags, particularly in processing imaging data, a gap only recently ad-
dressed by initiatives like Zhang et al.’s GPU implementation for Vietoris–Rips
filtrations derived from point-cloud data, which does not extend to imaging
data [159].

In light of these observations, our investigation pivots towards the Euler
characteristic curve (ECC), a simpler yet expressively rich topological descrip-
tor tailored for imaging data analysis. The efficacy of ECC in delivering mean-
ingful topological insights across a spectrum of imaging applications [133–135]
positions it as a critical tool in our analytical arsenal. This research not
only highlights the ECC’s versatility but also underscores our groundbreaking
achievement in computing ECC with unparalleled speed, enabling the pro-
cessing of 3D images of size 5123 at an unprecedented rate of 30 times per
second. Our innovative streaming strategy further extends our capability to
process immense images, sizes of 40963 voxels and beyond, a feat made possi-
ble despite the intrinsic limitations posed by GPU memory constraints. These
breakthroughs hint at the potential for ECC computations to integrate seam-
lessly with contemporary image processing workflows, marking a significant
stride towards the harmonization of TDA with modern computational tech-
niques.

Machine Learning Integration. A key area of interest is the incorporation
of ECC computation within machine learning frameworks, notably convolu-
tional neural networks (CNNs), which have revolutionized fields ranging from
computer vision to biomedical image processing, and even computational as-
trophysics. Despite the promising integration of related topological descriptors
in similar machine learning contexts [136, 253, 254], the swift computation of
such descriptors remains a formidable challenge. It’s imperative to note that
our focus is predominantly on surmounting the barrier of accelerated com-
putation, sidestepping other challenges like gradient optimization, which fall
outside our current investigative scope.

The advent of CNNs marked a paradigm shift in the 1980s, propelling large-
scale applications into feasibility through the advent of modern GPUs. A crit-
ical analysis of CNN implementations reveals the performance impediments
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tied to CPU-bound operations for image processing tasks, even in scenarios of
high optimization [255]. This bottleneck, primarily attributed to the extensive
data transfer overhead between GPU memory and main memory (RAM), fu-
eled our motivation to develop a GPU-centric ECC implementation. In doing
so, ECC computation becomes an integral part of the processing pipeline, effi-
ciently handling images already resident in GPU memory, thereby mitigating
data transfer delays and enhancing overall processing throughput.

Physical and Astrophysical Simulations. Our research extends to sce-
narios involving large images or volumetric data, particularly emanating from
physical and astrophysical simulations increasingly run on GPUs. These simu-
lations generate large 3D volumes, motivating our pursuit of performing ECC
computations in vivo—directly within the simulation process, leveraging the
simulated volume’s residence in GPU memory for real-time analysis.

Contributions. The cornerstone of this paper is the development of a stream-
ing ECC computation method optimized for GPU implementation, tailored
specifically for imaging data analysis. While the underlying algorithm re-
mains straightforward, our contribution is deeply rooted in an

implementation meticulously refined for contemporary GPU architectures.
This involves adapting the computation to fit massive parallelism, ensuring
efficient use of limited GPU memory resources, and designing the algorithm
to circumvent data transfer latency—a primary bottleneck in computational
efficiency. Our implementation strategy, designed to exploit GPU/CPU asyn-
chronous operations and parallelism fully, is elaborated in detail, providing
insights into our methodological choices without assuming prior GPU techni-
cal knowledge.

By demystifying these GPU-centric computational strategies, we aspire to
broaden the adoption of GPU technologies in computational geometry and
topology software development. We are optimistic that the techniques em-
ployed here could catalyze further advancements in persistence computations,
particularly in the realm of image analysis, fostering a deeper integration of
TDA methodologies with contemporary computational practices.

Outline. Organized for clarity and depth, this paper begins with a brief
overview of ECC and its conceptual underpinnings (Section 6.2). We then
explore the current landscape of ECC applications and implementations (Sec-
tion 2.4.1), followed by a detailed exposition of our GPU implementation
strategy (Section 6.3), with advanced optimizations discussed in an Appendix
(Section 6.3.3). Comprehensive experiments are presented and analyzed in
Section 6.4, evaluating our methodology against established goals. The paper
concludes with a summary and reflections on our findings and contributions.
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6.2 Foundational Concepts

This section unfolds the foundational elements requisite for a topological ap-
proach to analyzing imaging data, alongside an introduction to the essentials
of GPU programming for computational acceleration.

6.2.1 Cubical Filtrations from Imaging Data

Our methodology processes d-dimensional grayscale images, essentially d-dimensional
arrays populated with real-valued intensities. These individual elements, termed
pixels within 2D contexts and voxels for 3D or higher dimensions, are uniformly
referred to as voxels here. A pivotal operation within our framework is thresh-
olding, a technique that isolates voxels beneath a specified intensity threshold
t. This operation is critical for structurally analyzing the topological evolution
of the image as the threshold varies.

Algorithm 2 Iterative Calculation of the Vector of Changes in Euler Char-
acteristic (VCEC)

Require: I: an input image
Ensure: V CEC: the vector delineating the Euler characteristic’s alter-

ations.
1: Formulate V CEC as a blank array
2: for all voxels v within I do
3: for all faces c of v do
4: if c is attributable to v then
5: Adjust V CEC[value of v in I] by (−1)dimension of face c

In alignment with pioneering works such as [140], our approach begins by
defining the fundamental unit of our analysis: the elementary interval, which
can be either an inclusive range [k, k + 1] or a singular value [k, k] for any
integer k. From this, we construct elementary (cubical) cells as combinations
of these intervals, with their dimensionality determined by the count of inclu-
sive ranges. This structure allows for a comprehensive discussion about the
various forms these cells can take, such as vertices, edges, squares, and cubes,
corresponding to dimensions 0, 1, 2, 3, and beyond. In this setup, a cell a is
considered a face of another cell b if a is fully contained within b, and con-
versely, a coface if b is contained within a. The notion of voxels pertains to
the cells of highest dimension within our cubical framework, with each voxel’s
intensity directly influencing its associated cells. This hierarchical value as-
signment forms the basis for constructing a cubical complex, K≤t, through
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thresholding, with the ensuing collection of these complexes as the threshold
t varies constituting a cubical filtration, meticulously indexed by t.

This expanded discussion not only sets the stage for a deeper topological
examination of imaging data but also prepares the ground for leveraging GPU
programming to accelerate the computation, promising a novel synthesis of
topological analysis and computational efficiency.

6.2.2 Expounding on the Euler Characteristic Curve

Given the foundational structure previously outlined, the Euler Characteristic
Curve (ECC) emerges as a pivotal concept within the realm of cubical filtra-
tions. Formally articulated as:

ECCi = χ(K≤ti) =
∑
j

(−1)jcj(K≤ti) =
∑
j

(−1)jβj(K≤ti) (6.1)

where ti represents the threshold values ranked from smallest to largest within
the image, cj(.) quantifies the j-dimensional cells, and βj(.) refers to the j-
dimensional Betti numbers. The correlation of ECC with the spatial topology
is cemented through the Euler–Poincare formula, as chronicled by [256], un-
derscoring the ECC’s integral role in mapping the topological landscape of the
data.

It’s pertinent to highlight that Betti numbers, denoting the ranks of the
cubical homology groups as per [140], serve as a bridge to understanding the
topological complexity of the cubical complex K≤t. Within the context of
three-dimensional complexes, these numbers provide a count of the connected
components, tunnels, and voids, hence portraying the ECC as an amalgama-
tion of disparate topological dimensions. This framework also accommodates
the notion of persistent homology, as explicated in [257] and further applied
in this domain by [258]. The interplay between persistent homology, Betti
curves, and the ECC is vividly depicted in Fig. 6.2, offering visual insights
into their interconnectedness.

6.2.3 ECC Computation Revisited

The traditional method for calculating ECC involves explicit enumeration of
the Euler characteristic at every threshold, a process bearing the time com-
plexity of O(mn), with m representing the distinct grayscale values in the
image and n the voxel count, presuming the image’s dimensionality remains
constant.

Pioneered by Snidaro and Foresti [132], the inaugural algorithm proposed
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Figure 6.1: Visualization of Algorithm 2 applied to a 2 × 2 image section.
Each voxel, representing a 2-cell, along with its associated 1-faces and 0-faces,
contributes to updating the VCEC based on the voxel’s specific filtration value
(refer to line 5 in Algorithm 2).

an O(n) complexity framework, albeit its intricate nature and challenges in
extending beyond two-dimensional analyses. In contrast, our methodology is
inspired by a substantially more straightforward algorithm [143] that concep-
tualizes an image as a cubical filtration.

Vector of Changes in Euler Characteristic (VCEC) Analysis. Central
to our strategy is the computation of the Vector of Changes in Euler Char-
acteristic (VCEC) - a series where V CEC0 = ECC0 and each subsequent
V CECi = ECCi − ECCi−1 for i > 0. Given that ECCi equates to the cu-
mulative sum of V CECj up to index i, we employ dynamic programming to
efficiently derive ECC within a temporal frame of O(m), leveraging parallel
algorithms on GPUs for practical speed enhancements, as suggested by [259].
This refined approach not only simplifies ECC calculation but also aligns with
advancements in GPU computing to facilitate rapid, scalable analysis of topo-
logical data characteristics.

In essence, each V CECi value articulates the Euler characteristic for cell
groups at threshold ti. While these groups constitute a chain complex, allowing
discussions on homology groups, they typically don’t form a cubical complex,
limiting the intuitive application of homology group ranks. These could be
understood in terms of relative homology, yet such an interpretation isn’t
imperative for our purposes.

Identification of Faces by Voxels. A face is deemed to be introduced by a
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grayscale input t=50 t=116 t=173

Figure 6.2: The bottom part of this figure displays an input image alongside
its three distinct thresholding stages, with grayscale intensities indicative of
terrain heights. At the top, three corresponding plots, aligned along a common
x-axis denoting the image’s threshold levels, illustrate the persistence diagram,
intentionally rotated for enhanced clarity. At every threshold level, the dia-
gram identifies the duration of topological entities: connected components (in
red) and cavities (in blue). Highlighted sections within these plots pinpoint
the existence of these topological structures at the specified thresholds, further
delineated as Betti curves beneath. The Euler Characteristic Curve (ECC)
emerges from the differential analysis of these curves, underscoring ECC’s de-
pendency on the enumeration of topological attributes, whereas persistence
homology also evaluates their significance.

voxel if it possesses the minimum value among all voxels encompassing that
face, effectively inheriting its value from the voxel. This process necessitates
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a method for breaking ties consistently: in cases where voxels share values,
preference is given to the voxel with a lexically earlier position within the
dataset. This procedure facilitates swift computation, obviating the need for
direct index comparisons, thereby streamlining the analysis.

Developing a Sequential Algorithm. To lay the groundwork for our ex-
ploration into VCEC computation within images, we propose a foundational
sequential algorithm (referenced in Algorithm 2 and illustrated in Fig. 6.1). A
significant advantage of this approach is its elimination of the necessity to di-
rectly manage information pertaining to cells of lower dimensions, simplifying
the process. This streamlined algorithm not only serves as a precursor to more
complex computations but also establishes a methodological baseline that will
inform the development of our more advanced GPU-based algorithm.

6.2.4 Expanding on GPU Computations

Diving deeper into the realm of Graphical Processing Units (GPUs), this seg-
ment elucidates the critical components and functionalities of GPUs that are
paramount for executing our computational tasks, with a detailed exploration
set to follow in Section 6.3.

Originating as accelerators for 2D graphical rendering and subsequently
evolving to facilitate 3D scene rendering, GPUs have transcended their initial
purpose. The inherent parallel nature of pixel processing, where each pixel’s
computation is both independent and similar to that of its peers, makes these
tasks ideally suited for parallelization. Today, GPUs have emerged as versa-
tile tools for a broad spectrum of general-purpose computing tasks. Despite
this broad utility, not every computational challenge is aptly met by GPU
processing; however, the calculation of the Euler Characteristic Curve (ECC)
distinctly benefits from the parallel computational capabilities GPUs offer.

Our focus narrows to Nvidia’s GPU hardware and the CUDA program-
ming framework, chosen for its widespread adoption and robust support com-
munity. The CUDA model allows programmers to define a kernel—a function
designed to run concurrently across a multitude of threads, leveraging the
massive parallel processing power inherent to GPUs. For instance, the Nvidia
RTX 2070 GPU, utilized in our experiments, provides up to 2304 individual
threads for computation, embodying Nvidia’s Turing architecture. It’s impor-
tant to note that the architectural nuances and programming strategies for
GPUs have evolved, moving towards more intuitive and accessible program-
ming paradigms. This evolution reflects not only in the increased flexibility
and efficiency of GPU programming but also in how these advances can be har-
nessed to enhance the computation of topological features like ECC in imaging
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data.
By integrating these insights into GPU technology with our algorithmic

strategies, we aim to push the boundaries of what’s possible with ECC com-
putations, making full use of the parallel processing prowess GPUs offer. This
exploration is not just about leveraging the raw power of GPUs but about
marrying this power with sophisticated topological analysis techniques to un-
lock new potential in the processing and understanding of complex imaging
data.

6.3 Execution on GPU

The execution strategy deployed on the GPU is delineated in Algorithm 3. To
enhance clarity, the exemplified code is deliberately condensed, emphasizing
the manipulation of 2D grayscale images, where pixel intensities span from 0
to 255. The computation’s architectural design is initially overviewed, followed
by a comprehensive explication of the execution specifics.

6.3.1 Execution Challenges

In migrating to a GPU-based framework, we confronted several pivotal chal-
lenges:

1. The translation from a CPU-centric algorithm to one optimized for GPU
utilization necessitated a fundamental reorganization to tap into the ex-
tensive parallelism offered by GPUs. This transition was not trivial, as it
involved scaling from a modest number of concurrent threads to manag-
ing thousands simultaneously, requiring a novel computation paradigm.

2. In contrast to the CPU implementation’s reliance on a straightforward
lock-free approach to mitigate concurrency issues, the GPU adaptation
demanded meticulous attention to race conditions and synchronization
intricacies. This was paramount not only for ensuring computational
accuracy but also for fine-tuning performance through strategic synchro-
nization granularity.

This section elaborates on the techniques and methodologies employed to ad-
dress these challenges, ensuring efficient utilization of GPU capabilities for
algorithm execution.
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Algorithm 3 Implementation of the VCEC on GPU for a 2D image

1: constant int image width, image height;
2: const int num bins = 256;
3: global void vcec kernel(cudaTextureObject t voxels, int*

vcec global)
4: {
5: shared int vcec local[num bins];
6: const int thread number = blockDim.x * threadIdx.y + threadIdx.x;
7:

8: if (thread number ¡ num bins)
9: vcec local[thread number] = 0;
10: syncthreads();
11:

12: const int ix = blockDim.x * blockIdx.x + threadIdx.x + 1;
13: const int iy = blockDim.y * blockIdx.y + threadIdx.y + 1;
14: if (ix ¿= image width + 1 —— iy ¿= image height + 1) return;
15:

16: int change = 1;
17: int c = tex2D¡float¿(voxels, ix, iy);
18: int t = tex2D¡float¿(voxels, ix, iy - 1);
19: int b = tex2D¡float¿(voxels, ix, iy + 1);
20: int l = tex2D¡float¿(voxels, ix - 1, iy);
21: int r = tex2D¡float¿(voxels, ix + 1, iy);
22:

23: // Vertices
24: change += (c ¡ l && c ¡ t && c ¡ tex2D¡float¿(voxels, ix - 1, iy - 1));
25: change += (c ¡ t && c ¡= r && c ¡ tex2D¡float¿(voxels, ix + 1, iy -

1));
26: change += (c ¡ l && c ¡= b && c ¡= tex2D¡float¿(voxels, ix - 1, iy +

1));
27: change += (c ¡= b && c ¡= r && c ¡= tex2D¡float¿(voxels, ix + 1, iy

+ 1));
28: // Edges
29: change -= ((c ¡ t) + (c ¡ l) + (c ¡= r) + (c ¡= b));
30:

31: atomicAdd(&vcec local[c], change);
32: syncthreads();
33: if (thread number ¡ num bins)
34: atomicAdd(&vcec global[thread number],

vcec local[thread number]);
35: }
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(2) Leveraging the GPU memory hierarchy and managing resource constraints
were paramount. GPUs are known for their complex memory architecture
and limited memory capacity. This necessitates a deliberate integration of
memory considerations into the algorithmic framework. We developed an op-
timized multi-tier caching system, informed by the specific access patterns
encountered when handling cubical complexes. By analyzing these patterns,
we significantly reduced reliance on slower memory types, instead utilizing the
GPU’s texture memory. This memory type benefits from a cache optimized for
spatial locality, caching data for a voxel and its immediate neighbors in both
2D and 3D spaces, thereby enhancing performance. (3) Another challenge was
maintaining efficient streaming operations to process data sets larger than the
GPU’s memory without compromising performance. We achieved this through
a streamlined pipeline approach, allowing computation and memory transfers
to occur concurrently, facilitating the handling of extensive data sets.

6.3.2 Computational Framework

The compute kernel, as defined in the C++ code in Algorithm 3, represents
the core computation performed by each thread. Moving forward, we adopt
a thread-centric perspective, focusing on the activities of an individual thread
while acknowledging that these actions occur in parallel across many threads.

Individual Thread. A single thread is responsible for processing one voxel,
executing the operations outlined in lines 3–5 of Algorithm 2. Specifically,
it assesses the voxel’s faces, determines those introduced by the voxel, and
modifies the VCEC vector accordingly.

Thread Blocks. Threads are organized into blocks, processing the image in
segmented rectangular sections. These sections are addressed simultaneously,
allowing for a scalable and efficient processing model. Refer to Fig. 2.2 for a
schematic representation.

6.3.3 Optimizations and Efficient Memory Usage

Tailoring computations to align seamlessly with the GPU architecture not only
leverages its computational power but also necessitates a strategic approach
to memory management. GPUs are distinguished by a layered memory hier-
archy, each layer offering distinct size limitations and access speeds. Unlike
traditional CPU-centric programming, where memory management is largely
abstracted away, effective GPU programming demands a meticulous allocation
and utilization of these diverse memory resources.
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In the following sections, we delve into our implementation strategy, high-
lighting the rationale behind our choices and pinpointing potential bottlenecks.
We initiate our discussion with a theoretical naive approach that directly trans-
poses Algorithm 2 onto a GPU framework. Through a progressive refinement
process, we address and rectify inefficiencies, culminating in the optimized ap-
proach detailed in Algorithm 3.

Managing Input Image Data. The transfer of image data from the sys-
tem’s main memory (RAM) to the GPU’s global memory marks the first step in
preparing for GPU-based processing. Global memory, owing to its substantial
capacity, is typically the only viable storage option on a GPU for accommodat-
ing images of practical dimensions. However, it’s crucial to acknowledge that
exceptionally large images may surpass the global memory’s capacity limits.
While our initial discussions presuppose the image’s compatibility with global
memory constraints, we later address and devise solutions for managing larger-
than-memory images in Section 6.3.4, ensuring a comprehensive approach to
GPU-based image processing.

This exploration into optimization techniques aims not just to adapt our
computational methodology to the GPU’s strengths but to do so in a way that
maximizes efficiency and performance. By carefully navigating the intricacies
of GPU memory management and iteratively refining our algorithm, we pave
the way for a robust and scalable implementation capable of handling the
demands of topological data analysis on large-scale imaging datasets.

Navigating Race Conditions for Efficient Memory Use. The practice
of storing the Vector of Changes in Euler Characteristic (VCEC) within the
global memory as a simple array of 256 integers introduces a critical chal-
lenge: race conditions. Given the parallel nature of GPU operations, multiple
threads concurrently updating a single memory location can lead to these con-
ditions. To counteract this, modern GPUs implement atomic operations, such
as atomicAdd, guaranteeing the integrity of updates to VCEC. Nonetheless,
the serialization of updates to the same memory address negates a fundamen-
tal GPU benefit—its inherent capacity for massive parallel processing.

Leveraging Register Memory to Counteract Serialization. A strate-
gic response to the challenge of race conditions involves utilizing registers
for interim voxel contribution tallies. Registers, representing the pinnacle
of GPU memory speed, are exclusively accessible to individual threads, ef-
fectively eliminating the concern of concurrent updates. While global VCEC
updates still require atomicAdd, the frequency of these updates is significantly
reduced—limited to a singular update per thread. This approach not only mit-
igates the adverse effects of serialization, inherent in handling 2D or 3D data
(which would otherwise necessitate 9 or 27 updates per voxel, respectively),
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but also capitalizes on the GPU’s parallel processing strengths, ensuring that
the computation of VCEC remains both efficient and scalable.

4-Connectivity 8-Connectivity

6-Connectivity 18-Connectivity 26-Connectivity

Kernel ExecuteStream1:

Stream2:

Stream1:

Stream2:

Serialized Execution

Overlapped Execution

Time
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Kernel ExecuteMemory Copy

Kernel ExecuteMemory Copy

Figure 6.3: (a) Displays the assortment of voxel connectivity patterns, crucial
for understanding cubical complex structures. (b) Demonstrates a strategy
where computational tasks and memory transfers are conducted in parallel,
showcasing a significant reduction in total processing time. This approach
exemplifies how synchronizing data-intensive operations with memory trans-
actions can optimize workflow efficiency on GPUs.

Enhancing Efficiency with Shared Memory. While leveraging registers
marks a substantial leap forward, achieving the epitome of optimization neces-
sitates employing shared memory. As a GPU memory type, shared memory
features lower latency than global memory but doesn’t quite match the speed
of registers. Its defining characteristic is the communal access it offers to
threads within the same block, allowing each thread to contribute to a block-
local Vector of Changes in Euler Characteristic (VCEC), rather than to the
global VCEC. This block-local VCEC mirrors the structure of its global coun-
terpart, consisting of an array of 256 integers.

To circumvent potential race conditions during updates, atomicAdd oper-
ations remain essential. However, the likelihood of these conditions materially
decreases as only threads from the same block interact with specific shared
memory locations. By judiciously selecting the block size—a parameter under
our control—we can fine-tune performance. This strategy benefits from the
reduced latency of shared memory and, on contemporary GPUs, the enhanced
efficiency of atomic operations performed within this space, a contrast to older
GPU models which might necessitate a nuanced approach for integrating re-
sults.

Concurrent Initialization and Aggregation. Initializing the shared mem-
ory and assimilating its contents into the global VCEC necessitates a parallel
approach. Each thread assumes responsibility for a unique location within the
shared-memory array, ensuring that the initialization and final aggregation
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processes are distributed evenly across the block’s threads. This method not
only streamlines the update process to the global VCEC but also emphasizes
the adaptability and precision in utilizing shared memory to optimize compu-
tational workflows.

Ensuring Coherence with Block-level Synchronization. The asyn-
chronous nature of thread execution within a block introduces the necessity
for stringent synchronization measures. Without these, threads risk operating
on yet-to-be-initialized memory segments or contributing incomplete local re-
sults to the global VCEC. By instituting block-level synchronizing barriers, we
guarantee that all threads within a block proceed from one operational phase
to the next in unison, thereby maintaining the integrity and reliability of the
computational process.

Through these meticulous optimizations—leveraging shared memory, par-
allelizing initialization and finalization steps, and enforcing block-level syn-
chronization—we not only address inherent challenges but also unlock new
levels of computational efficiency and accuracy, paving the way for advanced
GPU-based topological data analysis.

Strategic Neighbor Access. In our approach to constructing the cubical
complex, we adopt a dynamic methodology for determining the presence of
lower-dimensional cells. Rather than storing these cells directly, we analyze
the input voxels to infer which cells each voxel introduces. This process is
dependent on a comparison between a voxel and its immediate neighbors, ap-
plying a methodical approach to breaking ties between equally valued voxels.
For practical purposes, we engage with the 8-connectivity model in two di-
mensions (expanding to 26-connectivity in three dimensions) as illustrated in
Fig. 6.3(a). This model negates the need for an explicit representation of
vertices and faces with varying filtration values, thus conserving memory by
circumventing the additional data storage otherwise required.

Leveraging the Texture Cache for Efficient Data Access. One of the
critical challenges in GPU-based computations lies in the high latency associ-
ated with global memory access. To address this, we utilize the GPU’s texture
cache, a specialized caching mechanism designed to prefetch and store the val-
ues of neighboring voxels. Despite being occasionally referred to as texture
memory, it functions primarily as a caching layer above the global memory,
significantly reducing access times. When a voxel’s value is fetched through
this cache, as demonstrated in line 16, the system automatically caches the
values of its neighbors in a dedicated low-latency memory space, comparable
in speed to shared memory.

This caching strategy is specifically optimized to exploit the spatial lo-
cality inherent in ECC computations, ensuring that data access patterns are
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as efficient as possible. Given the parallel processing of neighboring voxels,
there’s a high probability that their values are pre-cached, thereby minimizing
the need for repeated global memory accesses. While this does not guarantee
the elimination of all uncached accesses—owing to the cache’s finite size—it
significantly enhances the efficiency of our computations, ensuring that, on av-
erage, the necessity for direct global memory retrieval is kept to a minimum.
This optimization exemplifies our commitment to maximizing computational
efficiency through innovative use of GPU resources.

Mitigating the Risks of Register Overflow. Our computational strat-
egy meticulously allocates voxel values to registers, the swiftest tier of GPU
memory. This allocation is particularly critical for 2D and 3D inputs, where
the spatial connectivity of voxels dictates their frequency of access and, con-
sequently, their storage in registers. For instance, in 2D scenarios, voxels
connected through 4-connectivity are implicated in multiple comparison oper-
ations, warranting their cache in registers for rapid access. Conversely, voxels
associated through 8-connectivity, which are referenced less frequently, are not
stored in registers to conserve this limited resource, relying instead on the tex-
ture cache for efficient access. This selective caching is critical to optimizing
computational efficiency and ensuring the judicious use of registers.

However, the allure of leveraging registers for every computational variable
can lead to register spilling, a counterproductive phenomenon where an excess
of data allocated to registers overflows into local memory. This overflow is
particularly insidious because local memory, despite its name, resides within
the much slower global memory, resulting in significant performance degra-
dation. This pitfall underscores the necessity of balanced register allocation,
especially given the hardware-imposed limits on the number of registers per
block and the configurable nature of block sizes.

Addressing the Challenges of Branching and Looping. While GPUs
afford a considerable degree of programming flexibility, their efficiency peaks
when operating under a SIMD (single instruction, multiple data) paradigm.
This implies that algorithms designed with a linear execution flow, devoid of
conditional branching or looping based on input data, are ideally suited for
GPU execution. Branching and looping introduce computational divergence
within thread execution, undermining the parallel processing capabilities of
GPUs and, by extension, the overall performance of the algorithm.

By adopting a strategic approach to register use, carefully managing data
access patterns, and minimizing branching and looping, our methodology aims
to leverage the inherent strengths of GPU architecture. This ensures that our
computational solutions not only achieve high levels of efficiency and speed but
also sidestep the common pitfalls associated with GPU programming, paving
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the way for advanced, optimized topological data analysis.

Navigating GPU Thread Scheduling with Warps. The GPU’s approach
to thread scheduling introduces the concept of warps, which are essentially
groups of 32 threads operating within each block. This grouping mechanism
is central to understanding GPU performance, particularly when dealing with
conditional branching. When an if statement causes the thread execution
path to branch, it can lead to intra-warp branching, where the warp’s threads
may follow different execution paths. This divergence forces the paths to be
executed serially rather than in parallel, potentially causing non-branching
threads to idle and diminishing the overall parallel execution efficiency. To
circumvent such issues, our implementation strategies include surrounding our
data with a protective layer of voxels set to infinite values, thereby reducing
the likelihood of divergent branching caused by boundary checks. Additionally,
we refine the logic for updating variables to minimize branching, such as by
incorporating the outcome of logical expressions directly into variable updates,
further optimizing our use of GPU resources.

Optimizing Data Access with Constant Memory. Efficiently manag-
ing data access within GPU kernels is crucial for performance, especially for
repeatedly accessed data like image dimensions. Repeatedly fetching such
information from the slower global memory can significantly hamper perfor-
mance. To address this, we leverage GPU’s constant memory for storing such
frequently accessed data. This specialized memory type is designed for the
rapid broadcast of its contents to numerous threads, significantly reducing ac-
cess latency compared to global memory. By storing essential parameters like
the width and height of the image in constant memory, we ensure that these
values are swiftly and efficiently available to all threads, enhancing our al-
gorithm’s overall efficiency and performance on the GPU. This strategic use
of constant memory is illustrative of our broader approach to GPU program-
ming, where understanding and exploiting the unique characteristics of GPU
memory types can lead to substantial performance gains.

6.3.4 Streaming for Large 3D Image Processing

Addressing the challenge of processing 3D images too large for conventional
GPU memory storage, we introduce a chunking strategy that divides the in-
put into manageable sections for sequential processing. This method not only
accommodates large datasets but also leverages CUDA’s asynchronous ca-
pabilities, allowing simultaneous data transfers and kernel executions. This
overlapping of operations effectively mitigates the latency traditionally asso-
ciated with moving data between GPU and system RAM, as demonstrated in
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Figure 6.4: Illustration of Chunking Mechanism in 2D and 3D Settings. This
figure highlights the concept of chunking as a strategy for partitioning the
input into manageable segments, ensuring a disjoint decomposition. The in-
troduction of padding around these chunks is critical; it extends beyond the
chunk’s original boundaries to include adjacent information, thereby facilitat-
ing accurate computations. This padding ensures that every cell, particularly
those at the chunk borders, is accounted for precisely once, preserving the
integrity of computational results.

Fig. 6.3.
For an input image with dimensions (w0, w1, . . . ), we segment the image

along its primary axis. This division results in c chunks, each with dimen-
sions up to (w0

c
, w1, . . . ). Such segmentation ensures that each chunk aligns

with contiguous memory addresses, adhering to the row-major order storage
convention in C++. To ensure each voxel within a chunk has full access to
its surrounding neighbors for accurate processing, we introduce a one-voxel
padding around each chunk, as depicted in Fig. 6.4. This padding either car-
ries the actual neighboring voxel values or is set to positive infinity to maintain
computational integrity.

Upon division, each chunk, inclusive of its padding, is sequentially loaded
into GPU memory for processing. Depending on the chunk’s size, one or more
CUDA blocks may be assigned for its computation. As computations com-
plete, resources are dynamically reallocated to subsequent chunks, ensuring
continuous processing.

Maximizing Efficiency through Concurrent Operations. Modern CUDA
devices are equipped with multiple engines dedicated to specific tasks—typically
including two copy engines for host-to-device and device-to-host transfers,
alongside a kernel engine for executing computation tasks. Utilizing pinned
(non-pageable) host memory and launching tasks in separate CUDA streams
facilitates the concurrent execution of these operations, devoid of interdepen-
dencies. This approach enables the simultaneous loading of chunks onto the
device, execution of computation kernels, and transfer of results back to the
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host. By judiciously selecting the number of chunks c, we significantly reduce
the overhead associated with data transfer. Fig. 6.3(b) exemplifies a scenario
where concurrent transfers and kernel executions virtually negate the kernel
execution time for a chunk when c = 2, showcasing the strategic advantage of
this streaming and overlapping methodology in large-scale 3D image process-
ing.

6.4 Experimental Setup and Methodology

For our experimental evaluation, we opted for the C++ programming lan-
guage, utilizing the compiler provided with Visual Studio 2019 (v142) and
adhering to the C++14 standard for compiling both our CPU and GPU-
based implementations. The hardware platform for these experiments was
a contemporary desktop configuration, consisting of an Intel Core i7-9700K
CPU equipped with 8 physical cores (hyper-threading was disabled for the
tests), 16GB of RAM for ample processing memory, and a Sabrent Rocket Q
2TB NVMe PCIe M.2 2280 SSD for rapid data access and storage. Graph-
ical processing was handled by a NVIDIA RTX 2070 graphics card, which
boasts 8GB of GDDR6 memory, providing a robust framework for assessing
the performance of our computational methods. This setup represents a well-
equipped but still accessible workstation, typical of a modern computational
environment.
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Table 6.1: In the comparative analysis presented through this table, we scru-
tinize the overall execution durations for both CPU and GPU-based method-
ologies. This comprehensive timing assessment encompasses all phases of ex-
ecution, inclusive of disk input/output activities as well as the preliminary
overheads incurred during the initialization of GPU-related computational
processes. Particularly, the emphasis on the final two columns of the table
serves to illuminate performance metrics under conditions where computa-
tional data is pre-loaded into GPU memory, offering insight into the efficiency
gains achievable in optimized GPU memory utilization scenarios.

CPU GPU GPU GPU GPU
Input CPU GPU Overall disk disk over- exec. kernel
size(B) overall overall speedup read read head (kernel) Gvox/s

Uniform Noise

40963 256G 37.72m 9.10m 4.14x 7.30m 9.08m 0.67s 0.20m 5.62
20483 32G 4.86m 0.71m 6.77x 0.99m 0.71m 0.41s 0.03m 5.61
10243 4G 36.85s 5.63s 6.55x 6.85s 5.20s 0.37s 0.16s 6.57
5123 512M 4.97s 0.85s 5.86x 1.00s 0.64s 0.19s 0.02s 6.55

Gaussian Random Field

5123 512M 4.93s 0.86s 5.75x 0.90s 0.66s 0.19s 20.88ms 6.43
2563 64M 0.63s 0.24s 2.58x 0.13s 0.09s 0.15s 2.64ms 6.35
1283 8M 0.11s 0.12s 0.86x 0.02s 0.01s 0.12s 0.35ms 6.00

81922 256M 1.47s 0.53s 2.75x 0.44s 0.36s 0.16s 6.64ms 10.10
40962 64M 0.38s 0.21s 1.84x 0.12s 0.08s 0.14s 1.74ms 9.64
20482 16M 0.09s 0.18s 0.55x 0.04s 0.03s 0.12s 0.45ms 9.32

VICTRE

287 359 202 79.3M 0.59s 0.30s 1.98x 0.16s 0.13s 0.14s 3.85ms 5.41
440 518 488 424M 2.99s 0.77s 3.87x 0.98s 0.45s 0.24s 20.65ms 5.39
359 359 299 147M 1.11s 0.36s 3.02x 0.29s 0.15s 0.16s 7.13ms 5.40
434 446 384 283M 1.96s 0.53s 3.70x 0.79s 0.30s 0.18s 13.72ms 5.42

CMB

1500 750 1.07M 0.03s 0.12s 0.22x 0.01s 0.01s 0.11s 0.15ms 7.40
3000 1500 4.29M 0.09s 0.15s 0.61x 0.04s 0.02s 0.13s 0.44ms 10.16
6400 3200 19.5M 0.37s 0.25s 1.49x 0.13s 0.08s 0.14s 1.94ms 10.56
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Table 6.2: In our analysis, we present average timings derived from processing
a variable number of files, aiming to illustrate how performance scales with
workload size. This data unequivocally demonstrates the impact of GPU over-
head, which becomes significantly less burdensome when spread over multiple
samples, especially noticeable when dealing with singular, smaller files. A
critical observation from this table is the predominant limitation imposed on
GPU efficiency by disk input/output operations, highlighting a key bottleneck
in achieving optimal GPU performance.

Input GPU GPU disk

size(B) overall avg. [ms] read avg. [ms]

Uniform Noise

1282× 1 64K 119.83 0.69
1282× 100 6.25M 1.77 0.46

1282× 1000 62.5M 0.66 0.45
1282× 10000 625M 0.52 0.42

Gaussian Random Field

1283× 1 8M 124.68 12.02
1283× 10 80M 28.13 13.86
1283× 100 800M 15.38 13.82

1283× 1000 8000M 11.96 11.67

Datasets Utilized in the Study. Our analysis incorporates a diverse array
of datasets, blending both synthetic creations and data captured from real-
world phenomena:

• The cosmic microwave background (CMB) imaging data is sourced from
astrophysical observations, mapping the early universe. We utilize a
planar projection of the original spherical data at various resolutions,
with each image comprising no more than 256 distinct values.

• From the Virtual Imaging Clinical Trials for Regulatory Evaluation (VIC-
TRE) initiative, we employ simulated 3D imaging of breast tissue, gen-
erating a series of 20 volumetric breast images. These images are notable
for their limited palette of 11 unique values, emphasizing the project’s
focus on realism in medical imaging simulations.

• Our study further extends to 70 samples of 2D Gaussian Random Fields
(GRF) across 7 distinct sizes (10 iterations per size) and 30 samples
of 3D GRFs, organized into 3 size categories (with 10 iterations each).
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These images are characterized by a spectrum of 1024 unique values,
offering insights into statistical properties over space.

• For assessments on a larger scale, we generate datasets through uniform
distribution sampling across each voxel, referred to herein as uniform
noise, to test the scalability and performance under varied data condi-
tions.

With the exception of the CMB dataset—which is encoded as 8-bit un-
signed integers—the rest of the data is formatted in binary as 32-bit IEEE 754
floating-point numbers, ensuring precision and consistency across our compu-
tational evaluations.

Evaluating Voxel Processing Efficiency. Our primary interest lies in
quantifying the computational efficiency through the metric of voxel through-
put, essentially the volume of image data (in pixels or voxels) that can be
processed per second. We denote this measure in GVox/s, representing bil-
lions (109) of voxels processed each second, with temporal metrics recorded in
milliseconds (ms, 10−3 seconds).

6.4.1 Analyzing Single Image Processing Performance

For our evaluation involving single images stored on disk, we benchmark
against CHUNKYEuler by Heiss and Wagner [143], a leading CPU-based so-
lution for parallel streaming ECC computations. This tool represents the apex
of current CPU capabilities for handling data sizes within our experimental
scope. Our tests utilize the full capacity of all eight CPU cores available.

Comprehensive Execution Time Assessment. In this scenario, our anal-
ysis captures the total execution time, incorporating the duration required
to read the image data from disk storage; detailed results are compiled in
Table 6.1. Notably, for image files under 16MB, the CPU implementation
demonstrates superior speed, attributed to the initial overhead encountered
in launching GPU processes. Conversely, for larger files exceeding 0.5GB, the
GPU-based method outpaces the CPU version by a factor of 4 to 6 times.
However, it’s important to underscore that disk I/O operations consume a
substantial portion of the GPU execution time, ranging from 75% to 99.7%.

Efficient Streaming for Large-Scale Data Handling. Our approach suc-
cessfully processes image files far exceeding the limits of the 8GB GPU memory
and 16GB system RAM through an innovative streaming algorithm. Overcom-
ing this significant challenge, particularly highlighted in Section 6.4, allowed us
to process an image of 40963 dimensions, equivalent to 0.25TB of data. This
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accomplishment underscores the effectiveness of our streaming methodology
in managing data sizes beyond conventional memory capacities.

Understanding GPU Overhead. The previously discussed overhead is
attributed to several GPU-related activities, including device initialization,
shutdown procedures, and memory allocations specific to our computational
framework. This initial overhead is observed to range between 100 and 700
milliseconds and incurs only once. This characteristic underpins the GPU’s
enhanced efficiency not only for processing substantial datasets but also when
dealing with multiple smaller datasets collectively. The subsequent sections
will delve into this aspect further.

6.4.2 Exploratory Study: Batch Image Processing

Our exploration extends to batch processing scenarios involving multiple im-
age files, particularly emphasizing smaller file sizes that previously posed chal-
lenges due to the inherent GPU overhead. As depicted in Table 6.2, this
overhead becomes less significant when the GPU processes several files concur-
rently, leading to a preference for GPU processing over CPU methods in batch
scenarios. However, it’s crucial to acknowledge that this does not represent
an optimal condition for GPU utilization, given that performance continues
to be constrained by disk input/output operations.

Future Directions. This observation paves the way for potentially innova-
tive strategies, such as adopting compressed image formats to alleviate disk
I/O time constraints. Such approaches hold promise for further enhancing
processing efficiency and will be a focal point of our forthcoming research en-
deavors.

6.4.3 Focused Study: GPU-Centric Processing Frame-
work

Transitioning to a scenario that aligns closely with our core objectives, we
investigate an operational context where image data resides and undergoes
processing exclusively within GPU memory. This setup simulates end-to-end
GPU-centric pipelines, notably those involving advanced convolutional neu-
ral network (CNN) applications. Our aim is to ascertain whether our ECC
kernel can seamlessly integrate into such GPU-dedicated pipelines without
introducing significant performance impediments. Moreover, this evaluation
seeks to confirm the absence of unanticipated bottlenecks within our compu-
tational architecture, ensuring the viability of our approach for high-speed,
GPU-exclusive analytical workflows.
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Table 6.3: This table delineates the execution times associated with a pipeline
that iteratively conducts ECC and Gaussian smoothing operations. The piv-
otal insight derived from this analysis is the dominance of the overall com-
putational duration by the execution of these two kernels when the process
is averaged over several iterations. Such a pattern emphatically confirms the
absence of extraneous bottlenecks within the pipeline, particularly validating
the efficiency of our ECC computational process. It’s noteworthy that the im-
age data is loaded from disk only once at the onset, rendering the disk loading
duration a singular expense in the context of this pipeline’s execution timeline.

Overall ECC mem. ECC exec. Gaussian Disk

Overall avg. avg. avg. exec. avg. read

[ms] [ms] [ms] [ms] [ms] [ms]

Uniform Noise

(ECC+Gaussian) × 1 137.16 137.16 0.28 0.16 1.55 7.72
(ECC+Gaussian) × 10 172.80 17.28 0.06 0.15 0.20 7.38
(ECC+Gaussian) × 100 149.96 1.50 0.03 0.13 0.09 7.81

(ECC+Gaussian) × 1000 352.02 0.35 0.03 0.12 0.07 7.22
(ECC+Gaussian) × 1000 2786.64 0.28 0.03 0.17 0.07 7.57

Pipeline Configuration. We devise a pipeline comprising two key stages
aimed at enhancing image analysis efficiency: (1) ECC computation; followed
by (2) application of a Gaussian smoothing filter. These steps are cyclically
executed on an image preloaded into GPU memory, with the process iterating
up to 10,000 times on a 10242 Gaussian Random Field (GRF) image. After
every iteration, the Vector of Changes in the Euler Characteristic (VCEC) is
transferred to RAM for ECC computation and further processing.

Gaussian Smoothing Filter. The Gaussian smoothing filter is implemented
as a discrete Gaussian convolution, leveraging its separability for optimized
performance through a specially designed GPU kernel. The Gaussian kernel
is set to a width of 13 pixels, as depicted in Fig. 6.5, to ensure effective
smoothing.

Identifying Potential Performance Bottlenecks. Given that the image
is initially loaded into the GPU memory, the disk read time is effectively
distributed over numerous kernel executions. This distribution also applies to
the initial GPU overhead. As demonstrated, the process of transferring the
VCEC from GPU to RAM and its subsequent CPU processing (column ”ECC
mem” in Table 6.3) does not significantly affect performance. The primary
contributors to the overall processing time are the executions of the kernel
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Figure 6.5: Images at consecutive steps in the smoothing pipeline.

operations themselves.

Comparative Performance Analysis. This setup enables a direct per-
formance comparison between the ECC kernel and the Gaussian smoothing
kernel. According to Table 6.3, both kernels exhibit comparable throughput
rates, with the Gaussian kernel achieving up to 2.5 times faster performance.
Nonetheless, its influence on the comprehensive performance within a CNN
framework is expected to be minimal, considering that convolution operations
typically account for less than half of a convolutional layer’s total processing
time.

ECC Kernel Efficacy. The efficacy of the ECC kernel is underscored by its
processing throughput, ranging between 5 and 10 GVox/s. This throughput
facilitates the efficient handling of:

1. Volumetric 3D images of 5123 voxels at a frequency of 30Hz;

2. High-resolution 2D images with 8K dimensions (7680 × 4320 pixels) at
a frequency of 120Hz.

These metrics underscore the ECC kernel’s capability to support high-frequency
analysis across various image resolutions, enhancing the utility of GPU-accelerated
image processing pipelines.
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Table 6.4: The table presents the averaged total and kernel-specific execution
times across different sizes of binary data inputs. In this context, ”binary
data” implies an input grid consisting solely of 0s and 1s. The binary nature
of the data leads to more sequential accesses within the histogram operations
of the GPU kernels, which is evidenced by the extended GPU total and kernel
execution times in comparison to those observed with Gaussian Random Field
(GRF) data. This increase in processing time highlights the impact of data
structure on the efficiency of GPU computations.

GPU overall avg. [ms] GPU exec. (kernel) [ms] GPU kernel Gvox/s
bin.—GRF—(bin.-GRF)/GRF bin.—GRF—(bin.-GRF)/GRF bin.—GRF—(GRF-bin.)/GRF

5123 867.09 — 859.22 — 0.92% 29.44 — 20.88 — 40.99% 4.56 — 6.43 — 29.08%

2563 244.16 — 243.52 — 0.26% 3.70 — 2.64 — 40.15% 4.53 — 6.35 — 28.66%

1283 149.04 — 124.68 — 19.53% 0.48 — 0.35 — 37.14% 4.37 — 6.00 — 27.16%

81922 559.27 — 534.71 — 4.59% 15.53 — 6.64 — 133.88% 4.32 — 10.10 — 57.23%

40962 236.76 — 210.41 — 12.52% 3.97 — 1.74 — 128.16% 4.23 — 9.64 — 56.12%

20482 190.13 — 178.13 — 6.73% 1.04 — 0.45 — 131.11% 4.03 — 9.32 — 56.76%

6.4.4 Assessment of Binary Data Handling and Explo-
ration of Optimizations

The utilization of atomicAdd function is crucial for preventing race conditions
when concurrent threads target the same bin in the VCEC array, leading to
sequential access patterns that can undermine parallelism. This issue becomes
more pronounced with inputs having limited unique values, causing numerous
threads to converge on identical memory locations. In this context, we employ
binary data—essentially a grid comprised solely of 0s and 1s—as a stringent
test case for our algorithm. We further delve into two potential optimization
strategies: (1) a 2-round VCEC accumulation process and (2) a warp-level
VCEC computation approach, aiming to curb the serial access bottleneck to
the VCEC array. It’s noteworthy, however, that these strategies were ulti-
mately not incorporated into our final implementation due to the marginal
performance gains observed.

Binary Data Performance Insights. The performance implications for bi-
nary inputs are delineated in Table 6.4, juxtaposed with selected data from
Table 6.1 to facilitate a comparative analysis with Gaussian random fields
(GRF) data. For binary data, the GPU kernel execution time sees a signif-
icant uptick—approximately 130% in 2D scenarios and 40% in 3D contexts.
Despite being a challenging test case, the GPU kernel maintains commendable
efficiency, processing over 4 Gvoxels per second. Nonetheless, the exploration
into mitigating the effects of serialized VCEC writes is warranted.

2-round VCEC Accumulation Exploration. A novel 2-round VCEC ac-
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cumulation approach was prototyped to address the challenge of serialized
access during concurrent thread writes. This technique, designed to enhance
performance in situations characterized by a multitude of thread blocks and a
constrained range of values, modifies the traditional method where each block
directly contributes to a singular global VCEC vector. Instead, contributions
are first made to intermediary vectors which are subsequently merged to con-
struct the global vector. This strategy, though innovative, was not adopted
in our final implementation due to its limited impact on overall performance
enhancement.

Table 6.5 presents our experimental findings, where the kernel execution
time for the 2-round scheme encompasses both the ECC computation and the
aggregation of intermediate vectors. The subscript percentages denote the pro-
portion of intermediate VCEC vectors relative to the total number of thread
blocks. For context, results from our original GPU implementation on both
Gaussian Random Fields (GRF) and binary data are recapitulated in Table
6.4. While the 2-round scheme tends to augment overall overhead, resulting in
prolonged GPU and kernel execution times for GRF data, a notable exception
is observed with 2D datasets of size 8192 × 8192. Here, the scheme demon-
strates an enhancement in performance attributable to the sizable nature of
the input and its comparatively limited value spectrum, featuring 600 unique
values versus the 1000+ found in 3D datasets sized 5123. Conversely, for bi-
nary data, the reduced conflict from concurrent writes to bins for voxel values
0 and 1 under the 2-round VCEC accumulation scheme is manifested through
marked improvements in kernel execution time.

The introduction of a hyper-parameter dictating the ratio of intermediate
vectors to thread blocks, alongside an additional kernel for vector aggregation,
characterizes the 2-round VCEC accumulation scheme. Notwithstanding, the
supplementary kernel’s overhead generally surpasses the computational bene-
fits in the context of moderate-sized inputs. Consequently, enhanced perfor-
mance is predominantly confined to particular conditions, such as expansive
inputs with restricted value distributions.

6.4.5 Optimization through Warp-Level VCEC Compu-
tation

Utilizing warp-level primitives within CUDA, our approach significantly en-
hances parallelism within each warp. This optimization allows threads to
individually access registers, manage distinct memory addresses, and pursue
divergent control flow trajectories, streamlining computational efficiency. Fur-
thermore, inter-warp data exchange is directly facilitated through registers,
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circumventing the need for shared memory’s additional load and store oper-
ations, as well as the overhead of using an extra register for address storage.
This method not only refines the execution efficiency but also simplifies the
data handling process, making it a superior alternative to traditional shared
memory utilization.

Table 6.5: This table presents a comparison of average kernel execution times
across three distinct implementations when applied to Gaussian Random Field
(GRF) and binary data. The implementations are as follows: (1) the original
GPU implementation, (2) an optimized GPU approach employing a 2-round
VCEC accumulation strategy with a 3% ratio of intermediate vectors to thread
blocks (GPU3%), and (3) a variation of the 2-round VCEC accumulation with
a heightened 30% ratio. Additionally, the fourth column, denoted as GPUwarp,
showcases the execution times utilizing warp-level VCEC computation specif-
ically for binary data. This comparative analysis aims to elucidate the per-
formance impacts of various optimization strategies on the kernel execution
times within different data contexts.

GRF exec. (kernel) [ms] Binary exec. (kernel) [ms]

GPU — GPU3% — GPU30% GPU — GPU3% — GPU30% — GPUwarp

5123 20.88 — 22.12 — 23.07 29.44 — 29.43 — 29.25 — 22.8
2563 2.64 — 2.75 — 2.76 3.70 — 3.67 — 3.67 — 2.91
1283 0.35 — 0.38 — 0.39 0.48 — 0.47 — 0.48 — 0.49

81922 6.64 — 6.44 — 6.56 15.53 — 14.28 — 14.26 — 14.87
40962 1.74 — 1.76 — 1.85 3.97 — 3.74 — 3.75 — 3.24
20482 0.45 — 0.45 — 0.46 1.04 — 0.96 — 0.95 — 0.72

We explored the efficiency of warp-level VCEC computation for binary
data, implementing a two-pass method that aggregates changes in the Euler
Characteristic separately for voxels valued at 0 and 1. This method employs
warp-level reductions, culminating with the first thread of each warp atomi-
cally updating the local VCEC. Subsequent to both passes, these local results
are atomically integrated into the global VCEC. The outcomes, denoted as
GPUwarp in our comparative analysis, revealed this approach outperforms the
2-round VCEC accumulation for binary datasets.

This warp-level strategy mandates that threads alternate between simu-
lating a zero-change in Euler characteristic and executing actual reductions, a
process potentially costly in worst-case scenarios involving diverse voxel values.
Despite its advantages for binary data, this approach’s efficacy diminishes with
inputs characterized by a broader spectrum of values, especially when dealing
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with floating-point data. The method showcases limited applicability, primar-
ily beneficial for datasets with minimal unique value counts, thereby restricting
its general utility across more varied or complex data types.

Table 6.6: This table displays the average execution times for images con-
structed by stitching together varying numbers of base images. Each base
image measures 64 by 64 pixels in two dimensions and 64 by 64 by 64 voxels
in three dimensions. The data clearly demonstrates that as the number of
base images stitched together increases, the processing time required per base
image decreases. For these tests, we utilized images generated from Gaussian
random fields.

Stitch GPU overall GPU disk GPU overall avg.

factor avg. [ms] read avg. [ms] / stitch factor [ms]

642 1 113.12 0.86 113.12
1282 4 124.24 1.12 31.06
2562 16 129.50 1.50 8.09
5122 64 130.36 2.46 2.03

10242 256 137.00 6.05 0.53

643 1 113.81 8.56 113.81
1283 8 124.68 12.02 15.58
2563 64 206.34 75.44 3.22
5123 512 984.64 797.54 1.92

In summary, the 2-round VCEC accumulation method demonstrated a
modest improvement in kernel execution time for binary data, achieving an
average speedup of 4.7%. However, it introduced an average slowdown of 5.6%
for Gaussian Random Field (GRF) data, attributing to the added overhead.
Conversely, warp-level VCEC computation on binary data yielded a notable
speedup of 20.9% on average, suggesting potential benefits for specific datasets.
Despite these findings, given the marginal improvements and the broader ap-
plicability of our method to a wide range of data with diverse values, we opted
against integrating these two techniques into our final implementation.

6.4.6 Case study: Batch processing with image stitch-
ing

Exploring a novel approach to batch processing, this case study investigates
the effects of stitching multiple base files into a single, larger image for GPU
analysis. Utilizing base images of size 64x64 in 2D and 64x64x64 in 3D, our
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experiments, as shown in Table 6.6, indicate that larger stitching factors sig-
nificantly reduce the processing time per base image. This method effectively
spreads the one-time GPU overhead across numerous base images, enhanc-
ing GPU resource utilization and effectively minimizing latency with larger
stitched images. Our results confirm that the overhead associated with stitch-
ing is negligible, offering a viable strategy for batch processing large datasets.

6.4.7 Dependence on dimension

Interestingly, our findings reveal that the algorithm’s performance remains
consistent across different image dimensions, underscoring the effectiveness
of our caching strategy. The seamless retrieval of neighboring voxels from
the cache mitigates the impact of having a higher number of neighbors (8
in 2D vs 26 in 3D), thus eliminating any significant performance difference
between two and three-dimensional images. This caching efficacy, however,
is limited to dimensions three or lower due to the constraints of the texture
cache, indicating that our approach’s advantages may not extend into higher-
dimensional spaces.

6.5 Discussion

This work unveils a novel GPU-based methodology for efficiently computing
the Euler Characteristic Curve (ECC) from imaging data. Our developed soft-
ware stands out for its exceptional functionality and high-speed performance,
offering significant advantages:

• Accelerated Processing: Our GPU-based approach facilitates rapid
image processing, achieving an impressive throughput of over 4×109 vox-
els per second when the data is stored in GPU memory. This capability
is particularly beneficial in the realm of convolutional neural networks
(CNNs), where swift data processing is paramount.

• Advanced Streaming Capabilities: The algorithm effectively man-
ages large-scale datasets by leveraging streaming, thus overcoming the
inherent limitations of GPU memory capacity. This adaptability ensures
the processing of extensive images without performance degradation.

• Comprehensive Topological Analysis: By calculating the ECC, the
software captures vital topological information, demonstrating successful
application across various domains and contributing to a deeper under-
standing of the data’s inherent structure.
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Looking ahead, we identify promising directions for future research and
application. Our objectives are two-pronged:

1. Integration into Convolutional Neural Networks: We aim to seamlessly
incorporate ECC calculations within CNN workflows. Bridging the cur-
rent gap in efficiency, we aspire to embed topological methods firmly
within mainstream machine learning paradigms, enhancing model inter-
pretability and performance.

2. Exploration of Persistent Homology: Building on our specialized knowl-
edge in GPU handling of cubical filtrations, we are motivated to explore
the full potential of persistent homology in this context. Anticipating
the development of pioneering GPU algorithms for persistence analysis,
we hope to set new benchmarks in the field of topological data analysis.

GPU algorithms can also be applied to other fields like clustering method
[260]. In conclusion, our work not only presents a breakthrough in topological
data processing but also lays the groundwork for substantial advancements in
machine learning and data analysis techniques.

6.6 Literature Review: Efficient Computation

of Euler Characteristic Curves with GPU

on Image Data

Inspired by our GPU computation of Euler Characteristic Curves, Choi et al.
present a GPU-friendly and computationally efficient algorithm to enumerate
toric seeds up to simplicial isomorphism, focusing on seeds with Picard number
4 [261]. This work extends the classification of toric manifolds with small
Picard numbers, building on the foundational classifications by Kleinschmidt
(1988) and Batyrev (1991) for Picard number≤ 3.

Malott el al. examine the dimensional Euler Characteristic Curve (ECC),
an efficient alternative to Persistent Homology (PH) for Topological Data
Analysis (TDA) [262]. It introduces an improved algorithm for computing
the dimensional ECC and interprets the results as proximity-series represen-
tations of topological features. The study explores methods to compare and
classify ECC curves, demonstrating their effectiveness and scalability in classi-
fying MRA Brain Artery scans, addressing limitations of PH in handling large
data sets.

Drawing inspiration from my work, Laky et al. present parallel algorithms
and software implementations for fast computation of the Euler characteristic
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(EC) for high-resolution 2D and 3D field data using vertex contributions [263].
The proposed methods significantly outperform existing tools like GUDHI and
match the speed of CHUNKYEuler, while also being capable of calculating
other topological descriptors such as perimeter, area, and volume. Tested on
synthetic data and real applications, the algorithms also include low-memory
versions for handling large data objects. All data and software are shared as
open-source code.

D lotko et al. explore Euler characteristic curves for 1-parameter filtrations
and Euler characteristic profiles for multiparameter filtrations as alternatives
to persistent homology in topological data analysis [264]. These Euler char-
acteristic–based approaches overcome persistent homology’s limitations, such
as difficulty in distribution, generalization to multifiltrations, and computa-
tional intensity for large datasets. The paper presents efficient algorithms
for distributed computation, demonstrates their stability, and showcases their
practical applicability through multiple use cases, making them robust tools
for big data analysis.

Munch provides a comprehensive overview of the Euler Characteristic Trans-
form (ECT), a powerful shape representation method. ECT encodes an em-
bedded shape using sub-level sets of a direction-based function, returning the
Euler characteristics of these sets [265]. Demonstrated to be injective on the
space of embedded simplicial complexes, ECT has found applications across
various disciplines, including plant morphology and protein structural analy-
sis. The article explains the main idea using a simple leaf example and surveys
the key concepts, theoretical foundations, and available applications of ECT.
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Chapter 7

Conclusion and Future Work

This thesis first introduces innovative applications of topology in deep learn-
ing frameworks, highlighting the integration of topological insights to improve
model robustness and interpretability. In Chapter 3, we discuss the devel-
opment of a Topology-Aware Generative Adversarial Network (GAN), which
incorporates topological loss functions to guide the training process, thereby
enhancing the generative model’s ability to produce images with accurate topo-
logical features. Another application is detailed in Chapter 4, where we present
a novel approach for identifying topological biomarkers in Breast Dynamic
Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI). This method
leverages topological data analysis to discern subtle patterns and structures
in medical images that are indicative of underlying biological processes, offer-
ing potential advancements in diagnostic imaging. Collectively, these chapters
showcase the potent integration of topological methods into high-performance
computing and deep learning, setting a new frontier in both fields.

Additionally, we embark on a detailed exploration of hardware-accelerated
techniques for computing persistent homology, a key tool in topological data
analysis. The investigation is structured into three distinct sections. The
first section, presented in Chapter 5, delves into the development of a hard-
ware accelerator specifically designed for efficient boundary matrix reduction, a
critical step in calculating persistent homology. The second section, discussed
in Chapter 6, focuses on GPU computation of Euler Characteristic Curves,
leveraging the parallel processing capabilities of GPUs to enhance computa-
tional efficiency and scalability. The third section extends the discussion to
a comprehensive GPU-based framework for persistent homology computation,
aiming to significantly reduce computation time and resource consumption.

Despite the substantial progress made in the field of topological data anal-
ysis (TDA), there remains an acute need for fast and reliable tools capable
of managing the complexities and scale of modern datasets. TDA can find
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applications in fields such as 3D vision [266, 267]. As we advance, my research
will focus on developing solutions that not only enhance computational effi-
ciency but also expand the accessibility and application of TDA. Below are
the directions I plan to explore in the next stage of my work:

• Efficient Persistent Homology Computation Tool: A paramount
objective is to create a tool that significantly outpaces current solutions
in computing persistent homology. This tool will be designed to deliver
accurate results reliably across a wide range of data sizes and precision
levels. Importantly, it will be user-friendly, easy to install, and compile,
ideally packaged within a Conda environment to facilitate widespread
adoption and ease of use.

• Visualization Tool for Morse Complexes: Another key develop-
ment will be a dedicated visualization tool tailored for Morse complexes.
This tool aims to serve both the topological data analysis and the broader
visualization communities. It will provide intuitive and insightful visual
representations of complex topological structures, making it easier for re-
searchers and practitioners to interpret and communicate their results.

• Deep Learning Framework for Topology Computation: I aim
to develop a deep learning framework capable of integrating gradient
propagation directly through topological computation algorithms. This
innovative framework will bridge the gap between deep learning and
topological analysis, enabling new classes of algorithms that can learn
from and leverage topological data in a fundamentally new way.

• Efficient Boundary Matrix Reduction Algorithm on GPU: To
address the computational bottlenecks in TDA, particularly in the re-
duction of boundary matrices, I will work on developing an algorithm
optimized for GPU execution. This effort will focus on harnessing the
parallel processing power of GPUs to accelerate the reduction process,
thereby enabling faster and more scalable computations that are crucial
for handling large-scale topological data.

Through these initiatives, I aim to push the boundaries of what’s possible in
topological data analysis, making it faster, more accurate, and more applicable
to a variety of real-world problems.
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Cireşan, Alessandro Giusti, Luca M. Gambardella, Jürgen Schmidhu-
ber, Dmitry Laptev, Sarvesh Dwivedi, Joachim M. Buhmann, Ting Liu,
Mojtaba Seyedhosseini, Tolga Tasdizen, Lee Kamentsky, Radim Bur-
get, Vaclav Uher, Xiao Tan, Changming Sun, Tuan D. Pham, Erhan
Bas, Mustafa G. Uzunbas, Albert Cardona, Johannes Schindelin, and
H. Sebastian Seung. Crowdsourcing the creation of image segmenta-
tion algorithms for connectomics. Frontiers in Neuroanatomy, 9:142,
2015. ISSN 1662-5129. doi: 10.3389/fnana.2015.00142. URL https:

//www.frontiersin.org/article/10.3389/fnana.2015.00142.
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