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A B S T R A C T

Characterization of breast parenchyma in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI)
is a challenging task owing to the complexity of underlying tissue structures. Existing quantitative approaches,
like radiomics and deep learning models, lack explicit quantification of intricate and subtle parenchymal
structures, including fibroglandular tissue. To address this, we propose a novel topological approach that
explicitly extracts multi-scale topological structures to better approximate breast parenchymal structures, and
then incorporates these structures into a deep-learning-based prediction model via an attention mechanism. Our
topology-informed deep learning model, TopoTxR, leverages topology to provide enhanced insights into tissues
critical for disease pathophysiology and treatment response. We empirically validate TopoTxR using the VICTRE
phantom breast dataset, showing that the topological structures extracted by our model effectively approximate
the breast parenchymal structures. We further demonstrate TopoTxR’s efficacy in predicting response to
neoadjuvant chemotherapy. Our qualitative and quantitative analyses suggest differential topological behavior
of breast tissue in treatment-naïve imaging, in patients who respond favorably to therapy as achieving
pathological complete response (pCR) versus those who do not. In a comparative analysis with several baselines
on the publicly available I-SPY 1 dataset (N = 161, including 47 patients with pCR and 114 without) and the
Rutgers proprietary dataset (N = 120, with 69 patients achieving pCR and 51 not), TopoTxR demonstrates a
notable improvement, achieving a 2.6% increase in accuracy and a 4.6% enhancement in AUC compared to
the state-of-the-art method.
1. Introduction

Breast cancer imaging faces a critical challenge in accurately model-
ing complex breast parenchyma structures, which change dynamically
due to factors like angiogenesis, radiation therapy, and chemotherapy.
Utilizing 3D breast imaging such as MRI to capture and model these
changes can significantly impact diagnosis, prognosis, and treatment
planning. Traditional cancer imaging studies have primarily focused
on tumor texture and shape, overlooking valuable information in the
tumor microenvironment. Evidence suggests that diagnostic and prog-
nostic insights lie in the peritumoral stroma and parenchyma, where
phenotypic diversity arises from factors like immune infiltration, vas-
cularity, and tissue composition. Parameters like fibroglandular tissue
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pattern and parenchymal enhancement also influence breast cancer risk
and treatment responses. To tailor diagnosis and treatment strategies to
improve patient care, there is a critical need for innovative quantita-
tive methods to comprehensively understand breast cancer biology by
exploring the tumor microenvironment and surrounding parenchyma,
which can be routinely observed in imaging scans such as breast MRI.

Various approaches for breast image analysis have been proposed.
Radiomic approaches learn diagnostic and prognostic signatures from
breast tumor and surrounding peritumoral regions using radiomics
features (Saha et al., 2018; Van Griethuysen et al., 2017a). These
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 data mining, AI training, and similar technologies. 
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Fig. 1. (a): 3D rendering of a phantom breast with highlighted glandular tissues (white)
and topological structures (blue); (b): glandular tissues; (c): topological structures.

handcrafted features, inspired by human knowledge, attempt to cap-
ture different measurements such as tumor/peritumor texture (Braman
et al., 2017), vessel geometry descriptors (Braman et al., 2022), and
other similar characteristics. However, these approaches have two fun-
damental limitations. First, they usually lack an explicit modeling of the
complex structural pattern of peritumoral stroma and parenchyma. Sec-
ond, these handcrafted features lack sufficient flexibility to model the
heterogeneous breast parenchyma and thus cannot provide the desired
level of predictive power in practice, despite abundant interpretability.

On the other hand, data-driven approaches, such as deep neu-
ral networks (Wu et al., 2023) and convolutional neural networks
(CNNs) (Burt et al., 2018; Jarkman et al., 2022; Tack et al., 2018;
Subasi et al., 2023; Su et al., 2023; Zhang et al., 2018; Zhu et al., 2017),
have shown great promise in various domains, as they learn feature
representations in an end-to-end manner. While direct application of
CNNs to MRIs seems promising (Liu et al., 2020a; ag Lundervold and
Lundervold, 2019; Lyu et al., 2022; Li et al., 2021; Mazurowski et al.,
2018; Nawaz et al., 2020; Dalmış et al., 2017; Ranem et al., 2022),
CNN methods take the whole MRI as a direct input; a large portion
of the input volume may be biologically irrelevant and even noisy
enough to bias the prediction model. Additionally, a 3D CNN possesses
millions of parameters and requires a substantial amount of training
data. Unfortunately, obtaining such amount of data is often impractical
for controlled clinical trials like the I-SPY 1 trial (Newitt and Hylton,
2016). Furthermore, CNNs suffer from the limitation of feature inter-
pretability as they lack direct association with the underlying breast
tissue structures.

In this paper, we propose TopoTxR, a novel method that overcomes
the aforementioned disadvantages. Our method extracts the breast
parenchyma structures using the mathematical language of topology.
It then effectively incorporates these rich topological structures into
deep convolutional neural networks, thereby significantly improving
predictive power. By explicitly modeling parenchyma, our approach
ensures that predictions are firmly based on biological structures, and
thus significantly enhances the performance of the data-intensive CNN
model, even with a limited training set.

Our method is based on the theory of persistent homology
(Edelsbrunner and Harer, 2010), which extracts 1D (loops) and 2D
(bubbles) topological structures with guaranteed robustness (Cohen-
Steiner et al., 2005). These structures correspond to curvilinear tissue
structures (e.g., ducts, vessels, etc.) and voids enclosed by tissues and
glands in their proximity. As shown in Fig. 2, compared to previous
radiomics features, the topological structures provide a much richer
structural context for the modeling of tumor microenvironment. Since
these structures are extracted in an unsupervised manner, the quality
of their interpretation becomes a key consideration. Using a phantom
breast imaging dataset (VICTRE (Badano et al., 2018)), we validate
both quantitatively and qualitatively that these topological structures
are reasonable approximations of the breast tissue structures. As il-
lustrated in Fig. 1, the extracted topological structures delineate the
glandular tissues of a phantom breast image.

To fully exploit the information carried by these topological struc-
tures, we propose a topology-guided deep learning model for breast
2 
images. The key idea is to direct the model’s attention to voxels
adjacent to these topological structures/tissue structures. As the model
is focused on a much smaller set of voxels with high biological rele-
vance, it can be efficiently trained with limited MRI data. Meanwhile,
the learning outcomes have the potential to connect the biological
causes of various breast pathologies with the manifestations observed
in the topology of tissue structures. A method closely related to ours,
developed by Du et al. (2022), employs a form of weaker topological
information known as Betti curves to enhance prediction accuracy.
However, the information carried by Betti curves is much more lim-
ited when compared to the explicit topological structures used in our
approach, leading to suboptimal performance.

While our approach is task-agnostic, we specifically focus on pre-
dicting the response to neoadjuvant chemotherapy (NAC) in breast
cancer treatment as a practical application. Correct prediction of patho-
logical complete response (pCR) prior to NAC administration can pre-
vent ineffective treatments, reducing unnecessary patient suffering and
healthcare costs. Empirically, we have evaluated our method on the
I-SPY 1 dataset (Newitt and Hylton, 2016) and a proprietary dataset.
In these evaluations, TopoTxR outperforms various baselines, includ-
ing radiomics approaches, CNNs trained without topological priors,
and other state-of-the-art approaches. This highlights the effective-
ness of our topology-centric approach in achieving superior predictive
performance.

In summary, we present a novel topological method to charac-
terize parenchyma in breast DCE-MRI, aiming to predict pCR. Our
method bridges the two extremes of engineered imaging features and
completely data-driven CNNs. Our key contributions are:

• Utilization of persistent homology theory to extract topological
structures that closely approximate breast fibroglandular tissue.

• Comprehensive evaluation using a phantom breast imaging
dataset to validate the accuracy of the extracted topological
structures in approximating breast tissues.

• Introduction of a topology-guided spatial attention mechanism
designed to direct the focus of 3D CNNs, thereby enhancing their
predictive capabilities.

This work builds upon our previous conference paper (Wang et al.,
2021) with four key enhancements: (1) A new topology-guided spatial
attention (TGSA) module that explicitly directs the attention of the 3D
CNN to biologically relevant sets of voxels with a mask loss. This new
module effectively eliminates the need for prior persistent homology
computing during the inference stage, making it more practical for
real-world applications. (2) An exhaustive empirical evaluation on the
VICTRE phantom dataset to validate the accuracy of the topologi-
cal approximation of breast tissues. (3) Model attention visualization
that confirms the proposed model’s attention is concentrated on a
smaller biologically relevant set of voxels when predicting treatment
responses using Gradient-weighted Class Activation Mapping (Grad-
CAM) (Selvaraju et al., 2017). (4) A new proprietary dataset along
with comprehensive evaluations to demonstrate the proposed model’s
generalization and versatility across different clinical settings. We have
made the source code publicly available via this GitHub repository to
facilitate the reproducibility of our research.

1.1. Related work

Quantitative imaging features have been used in conjunction with
machine learning classifiers for the prediction of pCR (Cain et al.,
2019; Mani et al., 2013). Radiomics approaches, involving analysis of
quantitative attributes of tumor texture and shape, have shown promise
in the assessment of treatment response. In particular, such features
capture the appearance of the tumors and, more recently, peritumor
regions (Braman et al., 2019; Grimm, 2015). Such approaches are often
limited by their predefined nature, lack of generalizability, reliance
on accurate lesion segmentation, and inability to explain phenotypic
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Fig. 2. (a) A example MRI image, and different radiomics features such as (b) 3D shape of a tumor, (c) intratumoral texture (Haralick entropy), and (d) whole breast texture
(Haralick energy). In (e), we show topological structures from TopoTxR, capturing the geometry of fibroglandular tissues.
differences beyond the peritumoral margin. CNNs have been previously
applied to breast DCE-MRI for pCR prediction (Liu et al., 2020b;
Ravichandran et al., 2018; Ha et al., 2018; Qu et al., 2020). Owing
to the sub-optimal performance of image-only models, image-based
CNN approaches have been fused with non-imaging clinical variables
to bolster prediction (Duanmu et al., 2020).

Moreover, there is extensive literature highlighting the use of CNNs
for cancer diagnosis in mammography (Kooi et al., 2017; Abdelhafiz
et al., 2019; Subasi et al., 2023). However, mammograms are only
2D projections of 3D tissue structures. This results in a loss of inter-
pretability of the extracted structures. 2D mammography is limited by
the loss of interpretability of extracted structures and 3D mammogra-
phy using tomography is limited by the inability of the mammogram
to provide information regarding background parenchymal enhance-
ment or tumoral/peritumoral enhancement kinetics. Moreover, MRI
has been shown to be superior to mammography in determining the
extent of breast cancer. In contrast, mammography and ultrasound
fail to accurately evaluate tumor size in 8% of cases post-neoadjuvant
chemotherapy, as reported in a retrospective review by Akazawa et al.
(2006), Keune et al. (2010) and Londero et al. (2004). The purpose of
post-neoadjuvant chemotherapy examination is to evaluate the extent
of residual disease. However, mammography, ultrasound, and physical
exams accurately detect only 13%–25% of pCR cases, as indicated in
a study by Herrada et al. (1997), Vinnicombe et al. (1996) and von
Minckwitz et al. (1999). MRI and ultrasound each remains superior
to mammography with respect to residual tumor detection. Notably,
MRI is significantly more effective than mammography in identifying
cases of multifocal or multicentric disease, as reported by Londero et al.
(2004).

Topological information, in particular, persistent homology
(Edelsbrunner and Harer, 2010), provides a robust way to quantify
the topological information in an image. This information, encoded
as persistence diagrams or persistence barcodes, has found diverse
applications in various image analysis tasks, such as cardiac image
analysis (Wu et al., 2017), brain network analysis (Lee et al., 2012;
Yao et al., 2024), and neuron image segmentation (Hu et al., 2019).
In recent years, it has been combined with deep neural networks to
enforce topological constraints in image segmentation tasks (Clough
et al., 2020; Hu et al., 2019; Shit et al., 2020; Stucki et al., 2023).
Abundant work has been done to learn topology from persistence
diagrams, for instance, through vectorization (Adams et al., 2017),
kernel machines (Carriere et al., 2017; Kusano et al., 2016; Reininghaus
et al., 2015), and deep neural networks (Hofer et al., 2017). Ad-
ditionally, topology has been formulated as graphs, which are then
effectively integrated with Graph Neural Networks (GNN) for appli-
cations such as pathology image classification (Wang et al., 2023)
and retinal artery/vein classification (Mishra et al., 2021). An even
weaker topological information called Betti curve is extracted for
learning with breast images (Du et al., 2022). However, the actual
geometric realization of the topological structures, e.g., cycles and
bubbles, has not yet been fully explored. These topological structures
capture the geometric details of breast tissues, such as fibroglandular
tissues, and can be mapped back to the original breast volumes to
provide biologically relevant information for further CNN analysis. For
the first time, we propose a deep learning method that leverages the
geometry of topological structures as an explicit attention mechanism
in this paper.
3 
2. Methodology

We propose a topological method to extract topological structures
of high saliency, approximating tissue structures, and utilize these ex-
tracted structures as auxiliary information to train a deep convolutional
network with raw MRI inputs. Although we focus on training our model
for the pCR prediction task, the methodology is versatile enough to be
generalized for other tasks. Our approach is detailed in Fig. 3.

We first compute salient topological structures from the input image
utilizing persistent homology theory. Topological structures of dimen-
sions 1 and 2, i.e., loops and bubbles, can both correspond to important
tissue structures. 1D topological structures capture curvilinear struc-
tures such as ducts, vessels, etc. 2D topological structures represent
voids enclosed by the tissue structures and their attached glands. These
topological structures directly delineate the critical tissue structures
with high biological relevance. Thus we hypothesize that by focusing
on these tissue structures and their affinities, we can gain pertinent
contextual information for pCR prediction.

Subsequently, we introduce a novel 3D CNN framework tailored
for breast MRIs that integrates topological structures via an attention
mechanism. Our method constructs a custom loss function, combining
a mask-guided loss and a refined classification loss, the latter based
on focal loss as detailed in Lin et al. (2017). Notably, we identify
two types of pertinent topological structures: loops and bubbles. Our
network consists of two separate 3D CNNs, treating the two types
of topological structures separately. Empirical evidence demonstrates
that both topology types capture complementary structural signatures,
proving essential for achieving optimal predictive performance.

Next, we present details of our method, including the background
knowledge of persistent homology (Section 2.1), how to compute cycles
representing the topological structures (Section 2.2), and our 3D CNN
with topology-guided attention (Section 2.3).

2.1. Background: Persistent homology

We review the basics of persistent homology in an intuitive way.
Interested readers may refer to Edelsbrunner and Harer (2010) for
more details. Persistent homology extracts the topological information
of data observed via a scalar function. Given an image domain, 𝑋, and
a real-valued function 𝑓 ∶ 𝑋 → R, we can construct a sublevel set 𝑋𝑡 =
{𝑥 ∈ 𝑋 ∶ 𝑓 (𝑥) ≤ 𝑡} where 𝑡 is a threshold controlling the ‘‘progress’’ of
sublevel sets. The family of sublevel sets  = {𝑋𝑡}𝑡∈R defines a filtra-
tion, i.e., a family of subsets of 𝑋 nested with respect to the inclusion:
𝑋𝛼 ⊆ 𝑋𝛽 if 𝛼 ≤ 𝛽. As the threshold 𝑡 increases from −∞ to +∞, topologi-
cal structures such as connected components, handles, and voids appear
and disappear. The birth time of a topological structure is the threshold 𝑡
at which the structure appears in the filtration. Similarly, the death time
is the threshold 𝑡 at which the structure disappears. Persistent homology
tracks the topological changes of sublevel sets 𝑋𝑡 and encodes them in a
persistence diagram, i.e., a point set in which each point (𝑏, 𝑑) represents
a topological structure with birth time 𝑏 and death time 𝑑. Its lifespan,
i.e., 𝑑−𝑏, is called the persistence of the structure. In practice, we believe
persistence is an indicator of the saliency of a topological structure; it
has been proven that the persistence of a structure bounds the amount
of perturbation one has to inject into the input in order to ‘‘shed off’’ the
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Fig. 3. Our proposed TopoTxR pipeline. We extract 1D and 2D topological structures from breast MRI based on persistent homology. Rather than using binary masks, we extract
topological structures with intensity values from raw MRIs (‘‘soft’’ topological masks) for mask loss 𝑚𝑎𝑠𝑘 supervision. Each 3D CNN branch includes five 3D CNN blocks and a
topology-guided spatial attention module (TGSA). The input to TGSA is the feature map from the third convolution layer, 𝐹𝑖, while its output to the fourth convolution layer is
the generated attention map multiplied by 𝐹𝑖. The model features two distinct 3D CNN branches with a fully connected network for pCR prediction.
Fig. 4. From left to right: a synthetic image 𝑓 , sublevel sets at thresholds 𝑏1 < 𝑏2 < 𝑑2 < 𝑑1, and the 1D persistence diagram. The red loop represents a 1D structure born at 𝑏1
and killed at 𝑑1. The green loop represents a 1D structure born at 𝑏2 and killed at 𝑑2. They correspond to the red and green dots respectively in the diagram.
structure (Cohen-Steiner et al., 2005). One may compute the number
of linearly independent topological structures at different thresholds,
𝑡. These counts parametrized by 𝑡 constitute a simpler topological
signature called Betti curves. We acknowledge that while Betti curves
can be directly computed from the persistence diagram, the reverse is
not possible.

See Fig. 4 for an example function 𝑓 and its sublevel sets at different
thresholds. At time 𝑏1, a new handle (delineated by the red cycle 𝑐1)
is created. This handle is later destroyed at time 𝑑1. Another handle
delineated by the green cycle 𝑐2 is created and killed at 𝑏2 and 𝑑2
respectively. The topological changes are summarized in a persistence
diagram on the right. Each handle corresponds to a 2D dot in R2, whose
𝑥 and 𝑦 coordinates are birth and death times. Their persistence values
are 𝑑1 − 𝑏1 and 𝑑2 − 𝑏2 respectively.

2.2. Persistence cycles and their computation

Although the persistence diagram has been used for topological
analysis in various dataset (Hu et al., 2019; Wang et al., 2020; Wu
et al., 2017), it only records limited information, i.e., the times at which
these topological structures appear/disappear. We hypothesize that a
detailed geometric realization of these topological structures can be
crucial for learning from images. To this end, we propose extracting
these topological structures and integrating them into the learning
4 
process. As shown in Fig. 3, we extract loops (blue) to denote 1D
topological structures and bubbles (red) for 2D topological structures.
These structures are then used to guide the attention mechanism within
the neural network.

Next, we formally introduce how different topological structures can
be represented with cycles. We also explain how these representative
cycles are computed. Intuitively, a topological cycle of dimension 𝑝
is a 𝑝-manifold without boundary. A 1-dimensional (1D) cycle is a
loop. A 2-dimensional (2D) cycle is a bubble. A cycle 𝑧 represents a
persistent homology structure if it delineates the structure at its birth.
For example, in Fig. 4, the red and the green loops denote the handles
born at time 𝑏1 and 𝑏2, respectively.

We assume a discretization of the image domain into distinct el-
ements, i.e., vertices (corresponding to voxels), edges connecting ad-
jacent vertices, squares, and cubes. These elements are referred to as
0-, 1-, 2-, and 3-dimensional cells, or simply 0-, 1-, 2-, and 3-cells. A
set of 𝑝-cells constitutes a 𝑝-chain. The boundary of a 𝑝-cell, 𝜎, is the
set of its (𝑝 − 1)-faces. For example, an edge’s boundary comprises its
two adjacent vertices, a square’s boundary includes the four enclosing
edges, and a cube’s boundary is made up of the six squares surrounding
it. The boundary of any 𝑝-chain, 𝑐, is the formal sum of the boundaries
of all its elements, 𝜕(𝑐) = ∑

𝜎∈𝑐 𝜕(𝜎), where the sum is the mod-2 sum.
In other words, we are taking the exclusive or of the boundaries of all
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Fig. 5. (a) Example of a cubical complex whose cells are sorted monotonically non-decreasing according to the function values. (b) 2D boundary matrix 𝜕. (c) Reduced boundary
atrix. (d) Persistence diagram and resulting topological cycles of 𝜕. (e) 1D boundary matrix.
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the elements.2 For a set of edges forming a path, the boundary consists
of the two end vertices. Similarly, for a set of squares forming a patch,
its boundary is the loop enclosing the patch, and for a set of cubes, the
boundary is the bubble enclosing them.

A 𝑝-chain is a 𝑝-cycle if its boundary is empty. All 𝑝-cycles form
he null space of the boundary operator, defined as {𝑐 ∶ 𝜕(𝑐) = ∅}.
very topological structure, formally defined as a homology class, can
e represented by various cycles, all equivalent under the boundary
perator. Formally, given any cycle 𝑧0 representing a homology class
, we can express ℎ as {𝑧0 + 𝜕(𝑐)} for all possible chains, 𝑐, of a higher
imension. We can choose any of the cycles to represent this class.
n persistent homology, we can represent each dot in the persistence
iagram with one representative cycle at its birth. As depicted in Fig. 4,

the red and green cycles represent the two corresponding handles.
ote that the choice of representative cycle is not unique. A relevant
uestion is to choose the shortest representative cycle (i.e., one with the

least number of edges) for each dot in the diagram (Wu et al., 2017;
Zhang et al., 2019). In this paper, we focus on choosing a standard
representative cycle for computational efficiency.

Computation of persistent homology and representative cycles.We
assume a filtration function on a discretization of the image domain.
An example discretization of a 2D image is given in Fig. 5(a). We first
sort all cells in increasing order according to their function values.
The vertices take the intensity values of their corresponding voxels.
For any higher dimensional cell, its function value is the maximum of
the values of its vertices. The computation of persistence diagrams is
then performed by encoding the 𝑝-dimensional boundary operator in
a binary matrix named boundary matrices, 𝜕𝑝. 𝜕𝑝 maps 𝑝-cells to their
boundaries. Fig. 5 shows the 1D and 2D boundary matrices of the given
complex and its filtration. The 1D boundary matrix is essentially the
incidence matrix of the underlying graph (Fig. 5(e)). High dimensional
boundary matrices are defined similarly (e.g., a 2D boundary matrix in
Fig. 5(b)). It is essential that the rows and columns of the boundary ma-
rices are arranged so that as we increase the row/column indices, the

corresponding cell function values are monotonically non-decreasing.
The persistence diagram is computed by reducing the boundary

matrix in a manner akin to Gaussian elimination, but without row or
olumn perturbation. This reduction involves column operations on 𝜕
xecuted from left to right and from bottom to top. Fig. 5(c) shows the
educed 2D boundary matrix. Upon reducing the boundary matrices,
ach non-zero column corresponds to a persistent dot in the persistence
iagram, as shown in Fig. 5(d). The reduced column itself is the cycle

representing the corresponding topological structure. In this paper, we
pay attention to both 1D and 2D cycles, corresponding to loops and
bubbles. The extracted cycles will be used to explicitly guide 3D CNNs
for analysis. The computation of representative cycles is of the same
complexity as the computation of persistent homology. In theory, it
takes 𝑂(𝑛𝜔) time (𝜔 ≈ 2.37 is the exponent in the matrix multiplication

2 The choice of mod-2 sum is because we focus on homology over Z2 field,
following the common practice in topological data analysis.
5 
time, i.e., time to multiply two 𝑛 × 𝑛 matrices) (Milosavljević et al.,
2011). Here 𝑛 is the number of voxels in an image. In practice, com-
puting all cycles for an input image of size (2563) takes approximately
5 min.

2.3. A 3D CNN with topology-guided spatial attention

To incorporate the generated topological structures into a deep
earning classifier, we propose a novel topology-guided spatial attention

module. Using a new loss that enforces the spatial attention map to
be similar to the topological structures, we direct the model’s atten-
tion to the vicinity of breast tissues, thus achieving better prediction
power. We first explain the generation of the topological mask, i.e., the
union of all topological structures. Next, we explain how to use the
topological masks to guide the attention of a deep neural network.

Generating topological masks. We initiate by extracting topological
structures which are represented as sets of voxels. The union of these
voxel sets is then used to form a mask that closely approximates
biologically pertinent regions.

To ascertain persistence and topological cycles that resemble breast
tissue, we invert the MRI image, denoted as 𝑓 = −𝐼 , causing the
issue structures to correspond to regions with lower intensity values.
ubsequent to this computation, we pinpoint topological cycles repre-
ented by dots on the persistence diagram with high persistence. It is
heoretically well understood that dots with lower persistence are less
ikely to represent genuine signals (Cohen-Steiner et al., 2005). As such,

we exclusively focus on high-persistence dots, which are indicative of
more prominent structures and have a higher likelihood of representing
true tissue structures. The persistence threshold is a hyper-parameter
adjusted empirically.

Upon selecting topological structures based on persistence, we use
the voxels from their representative cycles to craft topological masks.

e generate two distinct binary 3D masks that represent the 1D and
2D topological cycles. Empirical observations have revealed that a
‘‘soft’’ mask conveys more detailed information. Rather than directly
employing binary masks, the foreground voxels are populated with
heir inherent image intensity values. Given that all masked MRIs are
added to a size of 2563, we subsequently produce two topological
asks, 𝑀1

topo and 𝑀2
topo, which pertain to the 1D and 2D topological

ycles, respectively.

Topology-guided spatial attention. In vision-related tasks, spatial
attention creates an attention map by harnessing the inter-spatial re-
lationships among features (Woo et al., 2018). In the realm of medical
tasks, attention mechanisms have been effectively applied to medi-
cal image registration (Song et al., 2022) and drug response predic-
ion (Feng et al., 2021). TopoTxR employs this type of attention to focus

on topological structures. Unlike traditional spatial attention, mask-
guided attention integrates masks to sharpen model focus which offers a
more targeted approach (Pang et al., 2019). With these masks defining
explicit regions of interest, the model is adept at selectively concen-
trating on the most pertinent sections, while minimizing attention to
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Table 1
Average percentage of each tissue type over 25 samples from each phantom breast
rofile.

Dense Fatty Hetero Scattered

Fat 28.59% 79.82% 49.97% 70.44%
Skin 4.34% 3.09% 3.89% 3.26%
Glandular 42.19% 6.43% 28.45% 12.50%
Nipple 0.11% 0.02% 0.07% 0.03%
Muscle 22.00% 8.71% 15.18% 11.67%
Ligament 1.35% 1.68% 1.51% 1.61%
TDLUa 0.31% 0.01% 0.13% 0.03%
Duct 0.22% 0.07% 0.12% 0.06%
Artery 0.38% 0.07% 0.30% 0.17%
Vein 0.49% 0.09% 0.39% 0.21%

a Terminal Duct Lobular Unit.

regions that might contain noise or are of lesser significance based
on mask guidance. This not only streamlines the training process but
lso bolsters performance. Our work introduces the topology-guided
patial attention module, as illustrated in Fig. 3. This module generates
 spatial attention map, which is supervised by the aforementioned
‘soft’’ topology masks.

We employ distinct 3D CNN networks for both the 1D and 2D
branches, each maintaining the same architecture. Every 3D CNN is
structured with five 3D convolution layers, with each layer being
ucceeded by a batch normalization layer and then a LeakyReLU ac-
ivation. In the topology-guided attention module, the feature maps
rom the third convolution layer, referred to as 𝐹𝑖 (where 𝑖 signifies
he branch dimension), are initially processed through both average-

pooling and max-pooling operations independently. These pooled re-
ults are then concatenated, serving as input for a subsequent convolu-
ion layer. The convolution layer’s output passes through a sigmoid ac-
ivation function, resulting in the generation of attention maps, denoted
s 𝑀𝑖 where 𝑖 ∈ [1, 2].

To emphasize the regions highlighted by the attention maps, we
conduct an element-wise multiplication of 𝐹𝑖 and 𝑀𝑖. The product,

𝑖 ⊙ 𝐹𝑖, is channeled as input into the fourth layer of the 3D CNN.
utputs from both 3D CNN branches are subsequently vectorized and
oncatenated. This combined output feeds into the fully convolutional
etwork, culminating in a binary classification. In our ablation study,
e further investigate the optimal layer from which to source input for

he attention module.
The generation of spatial attention masks is guided by ‘‘soft’’ topo-

logical masks. This guidance ensures their similarity is captured
through a mean squared error (MSE) loss. The loss for our topology-
guided spatial attention module, denoted as 𝑚𝑎𝑠𝑘, is defined as:

mask = ‖

‖

‖

𝑀1 −𝑀1
topo

‖

‖

‖

2

2
+ ‖

‖

‖

𝑀2 −𝑀2
topo

‖

‖

‖

2

2
, (1)

where 𝑀1
𝑡𝑜𝑝𝑜 and 𝑀2

𝑡𝑜𝑝𝑜 represent the topological masks for 1D and 2D
imensions, respectively.

The focal loss enforces a well-balanced classification performance
Lin et al., 2017). The focal loss, denoted as 𝑓 𝑜𝑐 𝑎𝑙, is defined as:

𝑓 𝑜𝑐 𝑎𝑙(𝑝) = −𝜃(1 − 𝑝)𝛾𝑦𝑔 𝑡 log(𝑝) − (1 − 𝜃)𝑝𝛾 (1 − 𝑦𝑔 𝑡) log(1 − 𝑝) (2)

In this context, 𝑦𝑔 𝑡 is the ground truth of the classification, while 𝑝
indicates the probability of the model prediction. Focal loss incorpo-
rates two hyperparameters: 𝜃 and 𝛾. The parameter 𝜃 is responsible for
balancing the weights of positive and negative sample losses, whereas
𝜃 amplifies the loss contribution from hard samples. The mask loss and
focal loss together form our overall loss function:

𝐴𝑙 𝑙 = 𝑓 𝑜𝑐 𝑎𝑙 + 𝜆𝑚𝑎𝑠𝑘, (3)

where 𝜆 is a hyper-parameter.
 i
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Table 2
T1/T2 values and standard deviations for each breast tissue type.

Mean T1 + Std. Dev. (ms) Mean T2 + Std. Dev. (ms)

Fat 366.78 ± 7.75 52.96 ± 1.54
Skin 887.00 ± 92.00 22.30 ± 7.00
Glandular 1444.83 ± 92.70 54.36 ± 9.35
Nipple 796.00 ± 21.00 63.00 ± 4.00
Muscle 1232.90 ± 255.00 37.20 ± 9.80
Ligament 400.00 ± 10.00 40.00 ± 2.00
TDLU 1444.83 ± 92.70 54.36 ± 9.35
Duct 796.00 ± 21.00 63.00 ± 4.00
Artery 1984.40 ± 146.70 275.00 ± 0.00
Vein 1984.40 ± 146.70 275.00 ± 0.00

3. Topological approximation of breast tissue: Validation on a
phantom dataset

The key hypothesis of this paper is that the topological structures,
extracted in an unsupervised manner, are good approximations of
breast tissue. This section empirically validates this hypothesis.

Ideally, we would like to observe a significant overlap between
the true breast tissue and the extracted topological structures. Un-
fortunately, obtaining ground truth breast tissue from MRIs is very
demanding in both time and expertise. Instead, we resort to the VIC-
TRE Breast Phantom data to generate synthetic breast volumes with
ground truth breast tissue. This phantom dataset is developed as part
of the VICTRE (Virtual Imaging Clinical Trials for Regulatory Evalu-
ation) project by the FDA (Food and Drug Administration) (Badano
et al., 2018). The project produces the VICTRE in-silico trials which
rovide Monte Carlo simulations of digital mammography (DM) and
igital breast tomosynthesis (DBT) exams. Although originally designed
or DM and DBT, we can synthesize MRIs using the same phantom
ata. By comparing with the ground truth tissue, we can validate
he approximation quality of the extracted 1D and 2D topological
tructures.

3.1. VICTRE synthetic dataset and the synthesized MRIs

The VICTRE Breast Phantom generates various types of synthesized
breast image volumes based on tunable parameters. Here, we adopt
the default configurations used in the VICTRE trial to generate four
ifferent profiles of breast phantom densities, covering different real
orld scenarios: dense, heterogeneously dense, scattered density, and

fatty. A synthetic 3D breast phantom is a multi-class mapping in which
each voxel is assigned with one of 10 tissue types: fat, skin, glandular,
ipple, muscle, ligament, terminal duct lobular unit (TDLU), duct,
rtery, and vein. Table 1 summarizes the composition of tissue types for

each profile. Fig. 6 shows sample volumes for each of the four profiles.
In experiments, we generate 25 sample volumes for each profile (100
in total) and simulate their corresponding MRIs for validation.

Using the 100 synthetic breast volumes, we perform simulations
to generate 100 different synthetic T1-weighted MRIs. The T1/T2
weighted values for each tissue type are listed in Table 2. For each
tissue type within a specific breast volume, we sample a single value
or both T1 and T2. This ensures that all voxels associated with that
articular tissue type have identical values within that breast volume.

However, for different breast volumes, we derive a new set of T1 and
T2 values for each tissue type based on the known distribution. The
simulated MRI signal is then computed using:

𝑆 = 𝑘[𝐻]
sin 𝛼(1 − 𝑒−𝑇 𝑅∕𝑇 1)
(1 − (cos 𝛼)𝑒−𝑇 𝑅∕𝑇 1) 𝑒

−𝑇 𝐸∕𝑇 2

where 𝑘[𝐻] is the spin density, 𝛼 stands for the flip angle, and TR
repetition time), and TE (echo time) are MR acquisition parameters.

In our experiments, we set 𝑘[𝐻] = 1, 𝛼 = 6◦, 𝑇 𝑅 = 50 ms, and
 𝐸 = 10 ms to mimic different T1-weighted images. The simulated MR
mages are processed by our algorithm to extract topological structures.
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Fig. 6. Row 1: 3D renderings of VICTRE phantom breasts of four distinct profiles. Rows 2 and 3: two slices at different positions of the corresponding breast phantoms. Red:
1-voxel width breast outline; blue: extracted topological structures; white: ground truth breast tissues. Each slice’s rendering includes several additional slices around the target
cross sections for detailed examination.
Table 3
Evaluation of the approximation quality of topological structures using topological precision and recall.

Topological precision↑ Topological recall ↑

Dense Fatty Hetero Scattered Dense Fatty Hetero Scattered

0.93 ± 0.01 0.95 ± 0.01 0.97 ± 0.01 0.96 ± 0.02 0.26 ± 0.01 0.20 ± 0.01 0.18 ± 0.03 0.17 ± 0.03
Table 4
Evaluation of the approximation quality of topological structures based on the mean distance from topological structures to breast tissues and
from breast tissues to topological structures.

Dist. Tissue to Topo. ↓ Dist. Topo. to Tissue ↓

Dense Fatty Hetero Scattered Dense Fatty Hetero Scattered

1.96 ± 0.08 1.88 ± 0.06 2.15 ± 0.09 2.05 ± 0.07 1.96 ± 0.08 15.67 ± 0.96 5.57 ± 0.33 11.50 ± 1.33
These extracted structures will then be compared with the ground truth
tissues, specifically the synthesized breast image volumes. Fig. 6 shows
the corresponding MRI images of the four phantom volumes.

3.2. Quantitative and qualitative validation

We show that the extracted topological structures effectively cap-
ture the breast tissues. We apply our method introduced in Section 2.2
to the synthetic MRIs to extract topological structures, and then com-
pare these extracted structures with the ground truth tissue in the
synthetic volumes. If there is a significant overlap, it indicates that
the extracted topological structures closely approximate the actual
breast tissue. In our study, breast tissue is defined as the union of
all tissue types characterized by rich structures, including glandular
tissue, TDLU, ducts, arteries, and veins. Conversely, fat, skin, nipple,
muscle, and ligament are categorized separately from breast tissue and
are considered as background elements.

The comparison between the topological structures generated by
our algorithm and the ground truth breast tissue is detailed in Tables 3
7 
and 4. We denote the predicted topological mask, encompassing the
union of 1D and 2D structures, as 𝑀𝑡𝑜𝑝𝑜, and the ground truth mask
of breast tissue as 𝑀𝑡𝑖𝑠𝑠𝑢𝑒. To assess this comparison, we employ four
different quantitative measures:

1. Topological precision: the percentage of predicted topological
mask being breast tissue,
|𝑀𝑡𝑜𝑝𝑜 ∩𝑀𝑡𝑖𝑠𝑠𝑢𝑒|

|𝑀𝑡𝑜𝑝𝑜|
;

2. Topological recall: the percentage of breast tissue that is cov-
ered by the predicted topological mask,
|𝑀𝑡𝑜𝑝𝑜 ∩𝑀𝑡𝑖𝑠𝑠𝑢𝑒|

|𝑀𝑡𝑖𝑠𝑠𝑢𝑒|
;

3. Distance from tissue to topological mask: the mean Euclidean
distance from a tissue voxel to its nearest voxel in the topological
mask,
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1
|𝑀𝑡𝑖𝑠𝑠𝑢𝑒|

∑

𝑥∈𝑀𝑡𝑖𝑠𝑠𝑢𝑒

min
𝑦∈𝑀𝑡𝑜𝑝𝑜

dist (𝑥, 𝑦);

4. Distance from topological mask to tissue: the mean Euclidean
distance from a voxel in topological mask to its nearest tissue
voxel,

1
|𝑀𝑡𝑜𝑝𝑜|

∑

𝑥∈𝑀𝑡𝑜𝑝𝑜

min
𝑦∈𝑀𝑡𝑖𝑠𝑠𝑢𝑒

dist (𝑥, 𝑦).

The topological precision and recall results are presented in Table 3.
Our experiment was conducted on a total of 100 volumes, comprising
25 volumes for each breast profile. We report the outcomes for these
ifferent profiles, providing both the mean and standard deviation.
he topological precision numbers indicate that the majority of the ex-
racted topological mask resides within the true breast tissues, showing
ver 93% alignment for all four profiles. This high percentage demon-

strates the accuracy of the extracted topological mask in delineating
the actual tissue. Regarding topological recall, the extracted topological
mask’s one-voxel thickness means it covers only a portion of the true
tissue. In essence, the topological mask acts as a ‘skeleton’ of the
reast tissue. This observation is highlighted by the topological recall
f 26.28% for dense breast profile. For heterogeneous, scattered, and
atty breast profiles, where the tissue is much sparser, the topological
ecall shows a lower percentage, ranging between 17% and 20%.

Similar observations are noted in the two distance-based metrics
presented in Table 4. The low mean distance from tissue to topolog-
cal mask, consistent across all profiles, indicates that the topological
ask effectively covers the tissue, with a topological mask voxel usu-

lly in close proximity to any tissue voxel. Regarding the distance
rom topological mask to tissue, we observe low values for dense and
eterogeneous profiles, suggesting that the topological mask closely
pproximates the true tissue in these profiles. Conversely, for scattered
nd fatty breast profiles, this distance is larger, implying that in these
rofiles, where the tissue is much sparser, the topological structures
end to be over-predicted, leading to false positive structures that are
ar from the actual tissue.

Qualitative validation. Fig. 6 illustrates how topological structures
effectively capture breast tissues. The first row presents 3D renderings
of VICTRE-generated synthetic breast phantoms for four distinct pro-
files. The second and third rows display two slices at different positions
of the corresponding breast phantoms, where the topological mask (in
blue) and ground truth breast tissues (in white) are shown, alongside
the breast outlines (in red). It is important to note that each slice’s
rendering includes several additional slices around the target cross
sections for detailed examination. It is clear that the blue topological
structures closely match the white breast tissues, especially noticeable
in the scattered and fatty volumes. This observation highlights that our
extracted topological masks effectively mirror the actual breast tissues,
confirming the biological significance of these structures.

4. Experiments and results

In this section, we evaluate the efficacy of TopoTxR in predicting
pCR response to neoadjuvant chemotherapy for breast cancers, utilizing
ata from both the public ISPY-1 dataset and a proprietary dataset from
utgers.

Given that TopoTxR captures topological structures of high rele-
ance approximating breast parenchymal structures, it offers substan-
ial predictive accuracy in gauging response to neoadjuvant chemother-
py. The structure of this section is as follows: Section 4.1 provides

details of the ISPY-1 and Rutgers datasets. Section 4.2 outlines imple-
entation details, including experimental settings and preprocessing

steps. Section 4.3 provides a detailed discussion of the baseline meth-
ods. Subsequently, Section 4.4 presents the quantitative results of our
nalysis. Finally, Section 4.5 is dedicated to presenting the findings
rom our ablation studies.
 r
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4.1. Dataset description

I-SPY1: The I-SPY1 DCE-MRI dataset, available via ‘The Cancer Imag-
ing Archive’ (TCIA) from the I-SPY1/ACRIN 6657 study (Newitt and
Hylton, 2016), includes longitudinal breast DCE-MRI scans evaluating
the impact of neoadjuvant chemotherapy (NAC) on stage II or III breast
ancer patients. All MRIs were performed on a 1.5 T scanner with a
reast coil. The study involved patients with T3 tumors, measuring
t least 3 cm in diameter, who were undergoing NAC. Initial volume
cquisition was pre-contrast, followed by subsequent volume acquisi-
ion during and post gadolinium-based contrast agent administration.
athological complete response (pCR) was used as a measure of the

effectiveness of NAC. Our method was validated by predicting pCR
using the initial MRIs taken four weeks prior to treatment from the I-
PY1 post-contrast DCE-MRI data. Our analysis included 161 patients,
ith 47 achieving pCR (average age = 48.8) and 114 not achieving pCR

average age = 48.5).

Rutgers proprietary dataset: We also applied our methods to a pro-
rietary dataset comprising 120 patients, among whom 69 achieved
CR and 51 did not. In this study, the first phase T1-weighted fat-
uppressed post-contrast DICOM images for each patient, captured 90 s
ost-contrast, were used. All imaging was performed on 1.5T MRI
canners, using gadolinium contrast agents (Gd-DTPA) at a dose of
.2 mmol/kg, administered at a rate of 2.0 mL/s, followed by a 10
L saline flush of 0.9%. This retrospective case-control study analyzed
ospital records spanning from January 1, 2008, to June 30, 2023, and
as conducted without direct contact with the participants.

We included 120 women from Robert Wood Johnson Barnabas
Health hospitals, specifically Newark Beth Israel Medical Center and

ooperman Barnabas Medical Center, all of whom had confirmed diag-
oses of invasive breast carcinoma. Tumors had to be clinically and
adiologically measurable post-biopsy, at least 10 mm in diameter.
xcluded were patients with prior cytotoxic regimens in the breast of
nterest, but those treated for contralateral breast cancer were included.
articipants were above 18 years of age, neither pregnant nor lactating,

had undergone a primary mass core biopsy, and had MRI-compatible
health conditions. Tumors needed to be stage I-III, T4, any N, M0, inclu-
sive of clinical or pathological inflammatory cancers, as well as regional
stage IV, provided the only site of metastasis was the supraclavicular
lymph nodes. Exclusion criteria included recent use (within 30 days)
of investigational agents and allergies to compounds resembling MRI
contrast dye, preventing contrast-enhanced examinations.

We would like to highlight that while our model is contingent on
high quality dynamic contrast enhanced MRI imaging, its utility across
the majority of breast centers is maintained given that most breast
practices undergo American College of Radiology (ACR) accreditation.
We agree that our model may not be generalizable for those practices
which do not use high quality DCE-MRI or ACR accreditation standards.
However, to ensure broad applicability, we have also applied our model
to the national dataset used in the I-SPY1 trial.

4.2. Experiment details

We implemented our model using Pytorch (Paszke et al., 2019) and
conducted all experiments on a single NVIDIA RTX A6000 GPU. Hy-
perparameters, including learning rate, momentum, loss weight factor,
and dropout rate for the dropout layer, were fine-tuned using a grid
search. Specifically, we conducted a 3-fold cross-validation on the I-
SPY 1 dataset, testing each combination of parameters in the grid. The

odel training was executed using the Adam optimizer (Kingma and
Ba, 2014), with the learning rate set at 0.01 and momentum at 0.9.

he dropout rate in the last layer was fixed at 0.2, and the weight
f the topology-guided mask loss, 𝜆, was set at 0.01. For the focal
oss, the class weight factors, 𝜃 and 𝛾, were adjusted to 0.68 and 2.0,
espectively, in line with the ratio of positive to negative samples in
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Table 5
Comparative analysis of our proposed method, TopoTxR, with baseline methods across four metrics – accuracy, AUC, specificity, and sensitivity
– on the I-SPY1 dataset, utilizing 10-fold cross-validation. The performance of TopoTxR integrated with non-imaging clinical features (denoted
as TopoTxR+Clinical) is displayed in the final row of the table.

Accuracy↑ AUC↑ Specificity↑ Sensitivity↑

Radiomics 0.563 ± 0.085 0.593 ± 0.098 0.552 ± 0.180 0.575 ± 0.081
PD 0.549 ± 0.081 0.567 ± 0.097 0.551 ± 0.167 0.547 ± 0.071
Radiomics+PD 0.563 ± 0.093 0.587 ± 0.099 0.592 ± 0.178 0.534 ± 0.087
ViTa 0.770 ± 0.035 0.676 ± 0.060 0.508 ± 0.020 0.874 ± 0.087
ConvNexta 0.745 ± 0.047 0.688 ± 0.069 0.572 ± 0.155 0.805 ± 0.070
ResNexta 0.740 ± 0.036 0.643 ± 0.088 0.373 ± 0.229 0.842 ± 0.108
DenseNet, (Huang et al., 2017) 0.814 ± 0.057 0.821 ± 0.031 0.827 ± 0.023 0.816 ± 0.079
DenseNeta w/ focal 0.789 ± 0.043 0.729 ± 0.053 0.627 ± 0.136 0.830 ± 0.071
DenseNet-KD, (Du et al., 2022) 0.905 ± 0.021 0.874 ± 0.016 0.825 ± 0.043 0.923 ± 0.030
TopoTxR w/o focal or TGSA 0.856 ± 0.046 0.807 ± 0.046 0.664 ± 0.123 0.949 ± 0.056
TopoTxR w/o focal 0.913 ± 0.031 0.918 ± 0.031 0.944 ± 0.057 0.892 ± 0.051
Self-Attention w/ focal 0.920 ± 0.030 0.922 ± 0.030 0.916 ± 0.065 0.927 ± 0.051
TopoTxR(Ours) 0.931 ± 0.027 0.917 ± 0.036 0.885 ± 0.068 0.950 ± 0.033
TopoTxR+Clinical 0.925 ± 0.023 0.926 ± 0.028 0.911 ± 0.056 0.940 ± 0.035

a Models represent the 3D versions we developed specifically for this analysis.
our training set. All input MRIs were of size 2563, and the model was
rained for 200 epochs with a batch size of 2, amounting to a total
raining time of approximately four hours. Inference for a single MRI
akes less than one minute.

Preprocessing. Preprocessing comprises two phases to prepare the data
from both the I-SPY1 and Rutgers proprietary datasets for effective
network training. Initially, we focus on noise elimination and stan-
dardization of the samples into a uniform shape. Specifically, images

ith excessive background noise were excluded. For the remaining
ata, we employed dilation and erosion techniques to further reduce
ny residual background noise. Subsequently, each MRI volume was
ropped to the foreground, ensuring a 2-voxel width margin in each

dimension. If any dimension of the cropped MRI volume exceeded
256, we resized it while preserving the original aspect ratio, ensuring
hat the largest dimension did not exceed 256. To center the fore-
round in each volume, we applied appropriate padding, resulting
n a standardized volume size of 256 × 256 × 256. This uniformity

facilitates seamless integration with deep neural network training. We
normalized the volumes’ intensity and inverted the intensity values
by multiplying each voxel by −1, thus preparing them for subsequent
persistent homology computation. The second step involves applying
a persistence threshold, selecting dimensions of topological structures,
and applying dilation to these structures before using them as inputs for
the network training. An ablation study of this second step is detailed
in Section 4.5.

4.3. Baselines

We conduct a comparative analysis using various baseline methods
n both the I-SPY1 and Rutgers proprietary datasets. Due to signifi-

cant differences between the Rutgers dataset and I-SPY1, we evaluate
them separately.3 We perform a 10-fold cross-validation on the I-SPY1
dataset and the Rutgers dataset. The baselines are listed below:

• Radiomics: We compute a 92-dimensional radiomic signature
(Van Griethuysen et al., 2017b) and train a classifier on this
signature. Features are extracted solely from the tumor region.

3 The I-SPY1 and Rutgers datasets underwent preprocessing protocols with
ifferent hyperparameters, including the selection of minimum tumor size and
pplication of distinct contrast enhancements. Furthermore, the inclusion of
atients with stage I or T4 in the Rutgers dataset contributes to variations in
he final image formation compared to I-SPY1.
9 
• Persistent Diagram (PD): A classifier is trained using topological
features derived from the persistence diagrams (PDs) of the MRI
images. While various classifier options are available and behave
similarly, we use the sliced Wasserstein kernel distance for PDs
as the feature vector (Carriere et al., 2017).

• Radiomics+PD: This method involves a combination of both
radiomic and PD features for classifier training.

We implement feature selection for all the aforementioned methods
using Mutual Information Difference (MID) and Mutual Information
Quotient (MIQ). For all baseline features, an exhaustive search is con-
ducted across all combinations of feature selection schemes and a range
of classifiers, including Random Forests, Linear Discriminant Analysis,
Quadratic Discriminant Analysis, and Support Vector Machine. We
report the results based on the best-performing combinations.

• DenseNet, DenseNet with focal loss, DenseNet-KD: We per-
form a comparative analysis of our method against DenseNet,
DenseNet with focal loss, and the state-of-the-art method,
DenseNet-KD, using the I-SPY1 dataset. DenseNet (Huang et al.,
2017) processes raw 3D MRI images directly as input. In contrast,
DenseNet-KD (Du et al., 2022) not only uses 3D MRI images
but also integrates topological pseudo labels, particularly Betti
number curves, for joint training with the DenseNet backbone.
This approach leads to noticeable improvements. The results of
this comparative analysis are detailed in Table 5.

• ConvNext, ResNext, ViT: We compare our method against state-
of-the-art architectures—ConvNext (Liu et al., 2022), ResNext
(Xie et al., 2017), and transformer-based ViT (Dosovitskiy et al.,
2020)—utilizing both the I-SPY 1 dataset and our proprietary Rut-
gers dataset. The results are presented in Table 5 for the I-SPY 1
dataset and Table 6 for the Rutgers dataset. It is important to note
that, like DenseNet, ConvNext, ResNext, and ViT were originally
designed for 2D inputs. We have developed 3D versions of these
models to conduct a comprehensive comparative analysis.

• TopoTxR+Clinical: Inspired by the work of Duanmu et al.
(2020), we gather non-imaging clinical data for the I-SPY1
dataset, which includes demographic information (age, race),
Estrogen Receptor Status (ER), Progesterone Receptor Status
(PR), Hormone Receptor Status (HR), Human Epidermal Growth
Factor Receptor 2 (HER2) Status, and a 3-level HR/HER2
categorization. We utilize this information to construct a non-
imaging clinical feature vector. This vector is then concatenated
with the feature maps from both 3D CNN branches, forming the
input for the fully connected (classification) layer to facilitate
pCR prediction.
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Table 6
Comparative analysis of our proposed method, TopoTxR, with baseline methods across four metrics – accuracy, AUC, specificity, and sensitivity
– on the proprietary Rutgers dataset, utilizing 10-fold cross-validation.

Accuracy↑ AUC↑ Specificity↑ Sensitivity↑

DenseNeta 0.783 ± 0.047 0.740 ± 0.047 0.781 ± 0.096 0.698 ± 0.151
ViTa 0.800 ± 0.041 0.757 ± 0.058 0.819 ± 0.094 0.696 ± 0.132
ConvNexta 0.725 ± 0.066 0.719 ± 0.075 0.784 ± 0.097 0.655 ± 0.154
ResNexta 0.758 ± 0.049 0.745 ± 0.046 0.795 ± 0.132 0.695 ± 0.138
TopoTxR w/o focal or TGSA 0.883 ± 0.041 0.862 ± 0.051 1.000 ± 0.000 0.724 ± 0.102
TopoTxR w/o TGSA 0.900 ± 0.031 0.878 ± 0.042 0.988 ± 0.023 0.769 ± 0.093
TopoTxR (Ours) 0.925 ± 0.028 0.900 ± 0.055 0.934 ± 0.051 0.867 ± 0.127

a Models represent the 3D versions we developed specifically for this analysis.
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4.4. Quantitative results

The quantitative results on the I-SPY1 dataset are presented in
Table 5. Our method, which incorporates focal loss and topology-
guided spatial attention, is compared against various baselines across
4 metrics, namely, accuracy, area under the curve (AUC), specificity,
and sensitivity. Notably, our proposed method outperforms the state-
of-the-art DenseNet-KD method in all four metrics. This achievement
highlights the superiority of the topological mask over the Betti curve,
which is the main feature used by DenseNet-KD. The richer information
content of the topological mask compared to the Betti curve likely
contributes to this enhanced performance. Additionally, our method
demonstrates a more balanced specificity and sensitivity, attributed to
the effective use of focal loss.

We substitute the topology-guided spatial attention module in our
framework with a self-attention module and compare against it. As
shown in row 12 of Table 5, the topology-guided spatial attention
proves to be significantly more effective for pCR prediction. This effec-
tiveness can be attributed to the topological mask’s ability to accurately
capture biologically relevant breast tissue. Additionally, the results of
incorporating non-imaging clinical features into our framework are
resented in the last row of Table 5. These results indicate that the

inclusion of clinical data does not significantly impact the efficacy of
our model.

Given the distinct imaging characteristics between the I-SPY1 and
utgers datasets (as detailed in Section 4.1), it is not feasible to train
TopoTxR on one dataset and test it on the other. Consequently, we con-
duct an independent evaluation using the Rutgers dataset, with the re-
sults presented in Table 6. The results presented in both tables demon-
strate that our proposed method consistently outperforms the baselines,
including state-of-the-art models such as DenseNet, DenseNet-KD, Con-
vNext, ResNext, and ViT across all datasets. This underscores the
effectiveness of our approach and its adept integration of topological
knowledge for predicting pCR.

Performance analysis across breast tissue density groups. We eval-
uated the performance of the proposed model across various breast
tissue densities to assess its clinical applicability. Due to the lack of
density labels in the public I-SPY 1 dataset, we classified the samples
from our proprietary Rutgers dataset into four groups based on the
density of fibroglandular tissue (FGT), as assessed by our radiologists
(N.S. and L.P.). The categorization is as follows:

• Dense: >75% of the breast comprises FGT.
• Heterogeneous: 51%−75% of the breast comprises FGT.
• Scattered: 25%−50% of the breast comprises FGT.
• Fatty: <25% of the breast comprises FGT.

We now present the performance of our model across the vari-
ous breast tissue density groups. According to Table 7, our method
consistently delivers superior performance across all density groups,
achieving perfect results on the fatty volumes. This highlights the
robustness of our proposed model across different breast tissue types.
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Table 7
TopoTxR pCR prediction results for four different densities of fibroglandular tissue in
the Rutgers dataset.

Accuracy↑ AUC↑ Specificity↑ Sensitivity↑

Dense 0.952 0.929 0.857 1.000
Hetero 0.913 0.912 0.905 0.920
Scattered 0.902 0.898 0.875 0.920
Fatty 1.000 1.000 1.000 1.000

4.5. Ablation studies

TopoTxR w/o focal loss or TGSA. To highlight the improvements
introduced by the focal loss and the topology-guided spatial attention
module (TGSA), we have performed a comparative analysis with the
initial version of TopoTxR. This earlier version, which lacks both focal
loss and TGSA, was published in a previous conference paper (Wang
et al., 2021). The initial TopoTxR also employs persistent homology for
extracting 1D and 2D topological cycles, as elaborated in Section 2.2.
The primary distinction lies in its approach to utilizing these masks;
he initial version of TopoTxR simply inputs the ‘‘soft’’ topological
ask (the product of MRI images and binary topological masks) into

the CNNs. In contrast, the method proposed in this paper utilizes
the topological masks as an explicit guiding mechanism to train the
topology-guided spatial attention module. As demonstrated in rows 10
and 13 of Table 5, our proposed method, which incorporates both
the focal loss during training and the TGSA module, surpasses the
performance of the initial TopoTxR and its variants.

Observations from Table 5 reveal that even in the absence of focal
loss or TGSA, the initial TopoTxR markedly outperforms the baseline
methods, specifically those utilizing Radiomics, PD features, or both.
urthermore, when compared to DenseNet, a deep learning method
evoid of topology information, the initial TopoTxR still shows su-
erior performance. These results underscore the significant value of
he proposed usage of topological masks in pCR classification, which
s not captured by radiomics, simple topological features like PD, or
onventional CNN application.

TopoTxR w/o focal loss. We carry out an additional experiment
on I-SPY1 dataset to assess the significance of the TGSA module. As
indicated in rows 11 and 13 of Table 5, TGSA effectively directs the
attention of the CNNs towards biologically relevant regions for pCR
prediction, resulting in a substantial enhancement of performance.
However, this approach still falls short of the performance achieved
by the model that incorporates focal loss.

TopoTxR w/o TGSA. The performance of TopoTxR when using only
ocal loss has been assessed on the Rutgers dataset, with the results
etailed in row 6 of Table 6. It is evident from these results that the
pplication of focal loss contributes to an improvement in performance.

Persistence Threshold. Recall that the persistence of a topological
structure is the difference between its birth and death times. To ensure
accuracy, we eliminate topological structures with low persistence,
as these are typically noise-induced and could adversely affect our
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Table 8
Ablation study results. All numbers are reported based on a 10-fold cross-validation on the I-SPY1 dataset.

Accuracy↑ AUC↑ Specificity↑ Sensitivity↑

Persistence threshold

90% Remain 0.913 ± 0.026 0.873 ± 0.058 0.817 ± 0.113 0.928 ± 0.052
60% Remain 0.906 ± 0.036 0.864 ± 0.058 0.769 ± 0.128 0.960 ± 0.039

Dimension

Dimension 1 0.900 ± 0.026 0.896 ± 0.035 0.880 ± 0.070 0.912 ± 0.036
Dimension 2 0.863 ± 0.038 0.845 ± 0.060 0.792 ± 0.141 0.899 ± 0.055
MRI+Dim1+Dim2 0.863 ± 0.042 0.825 ± 0.058 0.675 ± 0.124 0.954 ± 0.043
MRI 0.633 ± 0.200 0.621 ± 0.102 0.570 ± 0.322 0.673 ± 0.354

Dilation radius

Radius 2 0.894 ± 0.043 0.873 ± 0.058 0.817 ± 0.113 0.928 ± 0.052
Radius 4 0.863 ± 0.034 0.860 ± 0.063 0.827 ± 0.152 0.893 ± 0.045
Radius 8 0.913 ± 0.031 0.913 ± 0.031 0.911 ± 0.075 0.907 ± 0.061

Insertion point for the Topology-guided spatial attention module

After 2nd Conv 0.894 ± 0.018 0.908 ± 0.025 0.919 ± 0.064 0.898 ± 0.042
After 4th Conv 0.889 ± 0.042 0.879 ± 0.050 0.882 ± 0.104 0.876 ± 0.085
Fig. 7. Qualitative comparison of patients with and without pCR. First column: Slices of breast DCE-MRIs with tumor masked in orange (tumor masks are not used in TopoTxR).
Columns 2–4: 3D renderings of topological structures from three different views. 1-D structures (loops) are rendered in blue and 2-D structures (bubbles) in red. Right: cumulative
density function of topological structures’ birth times.
results. We assess the effects of persistence on the I-SPY1 dataset by
applying three distinct thresholds, retaining 90%, 60%, and 30% of
the structures respectively. These results are detailed in Table 8. As
indicated in the table, retaining 30% of the topological structures,
which is our default setting as shown in row 13 of Table 5, offers
an optimal equilibrium between the quantity and quality of these
structures.

Dimension of Topological Structures. We also evaluate our method
using only 1D structures (loops) and only 2D structures (bubbles). Each
of these approaches outperform the baseline methods that do not incor-
porate topology information, as evidenced in row 3 and 4 of Table 8.
However, they are still not as effective as TopoTxR, which utilizes both
1D and 2D topological structures. This outcome indicates that 1D and
2D structures provide complementary information, which is crucial
for accurate pCR prediction. For comparison, we extract 1D and 2D
soft topological masks as approximations of fibroglandular tissues and
stack them alongside the MRI volumes to form three-channel inputs for
training a 3D CNN. The results are documented in row 5 of Table 8.
While this method shows notable improvement over using MRIs alone
(as shown in row 6), due to the additional information provided by
the fibroglandular tissue approximation, it does not direct the model’s
attention as intentionally as the proposed model, resulting in inferior
outcomes.

Dilation Radius. In the process of generating topological masks, rather
than using binary masks directly, we create ‘soft’ masks by multiplying
these binary masks with the corresponding MRIs. We conduct an abla-
tion study using I-SPY1 dataset to examine the impact of varying the
radius of dilation operation on binary masks prior to this multiplication.
The data presented in row 7, 8, and 9 of Table 8 indicates that the best
11 
performance is achieved when no dilation operation is applied to the
binary masks.

Insertion Point for Topology-Guided Spatial Attention Module.
Finally, we examine how the insertion point of the TGSA module after
different layers affects performance. In addition to our default setting,
where TGSA receives feature maps from the third convolution layer,
we also examine its placement after the second and fourth layers,
adjusting the size of the topological masks accordingly. The findings of
this study are detailed in the last two rows of Table 8. Our observations
indicate that the default setting, as shown in row 13 of Table 5, yields
significantly better results.

In summary, the most effective results are obtained when 30% of
the topological structures are retained, by employing a combination of
both 1D and 2D structures without any dilation, and by applying the
topology-guided spatial attention module after the third convolution
layer.

5. Qualitative analysis

5.1. Topological feature interpretation

The topological structures identified through persistent homology
effectively capture the breast tissue structures. Learning directly from
these structures and their vicinity provides the opportunity for inter-
preting the learning outcomes and drawing novel biological insights.
Here we provide some visual analysis as a proof of concept.

Fig. 7 presents topological structures from three distinct perspec-
tives, showcasing one representative sample each for cases with and
without pCR. We observe that the 1D and 2D structures are sparser in
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Fig. 8. Attention maps of CNNs when making decisions about pCR predictions. Red: voxels contributing to decisions of CNNs; blue: voxels corresponding to extracted topological
structures. Columns 1, 3, 5, and 7 display 3D renderings of the attention maps, while columns 2, 4, 6, and 8 present cross-sections corresponding to the 3D renderings on their
left.
the case with a pCR response, while they appear denser in the non-
pCR case. Examining the corresponding MRI images, we notice that
the breast with pCR exhibits scattered fibroglandular tissue and min-
imal background parenchymal enhancement. In contrast, the non-pCR
breast displays more heterogeneous fibroglandular tissue accompanied
by moderate background parenchymal enhancement. This observation
suggests that the topological structures may be capturing the intri-
cate fibroglandular structure, potentially serving as an indicator of
treatment response.

We also analyze the topological characteristics of two patient popu-
lations by comparing their birth times, which indicate the threshold
at which a cycle first appears. Given our use of the inverse image
in the experiments, denoted as 𝑓 = −𝐼 , meaning the birth time
essentially corresponds to −1 times the brightness of a structure. For
each population (pCR and non-pCR), we compute the Cumulative
Density Function (CDF) curve using the average birth time from all
samples in that group. As depicted in Fig. 7 (right), the CDF for pCR
patients (in red) compared to non-pCR patients (in blue) reveals that
topological structures in pCR patients’ tissues tend to be less bright
or distinguishable than those in non-pCR patients, an observation that
aligns with our qualitative assessments. To statistically validate these
differences in CDFs, we conduct a Kolmogorov–Smirnov test (Massey,
1951). The resulting 𝑝-value of 0.0002 indicates a significant disparity
in the birth time distributions between the pCR and non-pCR patient
groups.

5.2. Validation on the model attention

The key idea in TopoTxR lies in its ability to direct CNN’s atten-
tion to a much smaller set of voxels with high biological relevance
manifested by the extracted topological structures. As shown in Sec-
tion 3, these structures have a strong connection with the breast tissue.
In this section, we prove that voxels corresponding to topological
structures play an essential role when CNN is making a pCR pre-
diction. We visualize the spatial attention using a post-hoc heatmap
visualization technique – Gradient-weighted Class Activation Mapping
(Grad-CAM) (Selvaraju et al., 2017). Grad-CAM generalizes Class Ac-
tivation Mapping (CAM) (Zhou et al., 2016) by lifting its constraints
on model complexity and provides good visual explanations for model
decisions. It generates a coarse localization map that highlights key
regions in the imaging data pivotal for predicting a specific concept.
Our aim is to utilize Grad-CAM to gain interpretative insights into the
decision-making process of TopoTxR. It is important to note that Grad-
CAM does not alter the learning mechanism of the model. It is applied
post-training to a model with fixed weights, serving purely as a tool to
shed light on how the model arrives at its decisions.

We employ the Grad-CAM implementation from the M3d-CAM li-
brary (Gotkowski et al., 2021) to visualize attention maps following
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the Topology-Guided Spatial Attention (TGSA) module in the best-
performing TopoTxR model. For comparison, we modify the TopoTxR
model to exclude the TGSA module, utilizing a single 3D CNN branch
that processes only raw MRI data. In this setup, Grad-CAM is applied
after the third convolution layer to visualize attention maps, as depicted
in the second row—‘CNN Grad-CAM’ in Fig. 8. Conversely, the attention
maps from our proposed model are shown in the first row—‘TGSA
Attention’. In Fig. 8, we provide a comparative analysis of the attention
maps from two views, showcasing one representative sample each for
cases with and without pCR. This comparison highlights that the TGSA
module effectively directs the CNN’s focus to specific, biologically
relevant regions, as delineated by topological structures. Conversely,
the model lacking topology information shows a more scattered and
dispersed attention distribution across the MRI volume. It is interesting
to note that the topological structures appear sparser in cases with a
pCR, whereas they are denser in cases without pCR.

6. Discussion

Breast composition in MRI is characterized by the amount of fi-
broglandular tissue (FGT) and the extent of Background Parenchymal
Enhancement (BPE) following contrast administration, in accordance
with the American College of Radiology (ACR) Breast Imaging Report-
ing and Data System (BI-RADS) standards. FGT is classified into four
categories: fatty fibroglandular tissue (≤25%), scattered fibroglandular
tissue (25%–50%), heterogeneous fibroglandular tissue (50%–75%),
and extreme fibroglandular tissue (≥75%). BPE is rated as minimal,
mild, moderate, or marked, based on the FGT enhancement relative
to the total FGT volume during the initial phase of T1-weighted fat-
suppressed post-contrast imaging, which is captured 90 s after contrast
agent administration.

Recent studies indicate that elevations in BPE correlate with an
increased risk of breast cancer development and changes in BPE can
predict NAC response (Chen et al., 2015; Liao et al., 2020; Oh et al.,
2018; Preibsch et al., 2016; Van Der Velden et al., 2015; You et al.,
2017, 2018). Our work hinges on the idea that breast composition
elucidated on MRI can predict treatment response in pre-neoadjuvant
chemotherapy MRI scans. Two notable studies (You et al., 2017, 2018)
highlight that post-chemotherapy reductions in BPE significantly cor-
relate with pCR, both in HER2-positive (You et al., 2018) and HER2-
negative breast cancers (You et al., 2017). The prevailing hypothesis is
that tumor-adjacent vascular permeability might echo BPE fluctuations
before and after NAC administration, with a general decline in BPE after
NAC (Rella et al., 2020).

FGT resembles the concept of mammographic density, a recognized
independent breast cancer risk factor (Duffy et al., 2018). When as-
sessing both FGT and BPE using MRI, research suggests that elevations
in BPE, regardless of FGT presence (e.g., moderate to marked BPE in
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breasts that are primarily fatty or have scattered FGT), can indicate
n increased cancer risk (Arasu et al., 2019). Thus, BPE is considered

more instrumental than FGT for evaluating NAC response and shaping
rediction models (Arasu et al., 2019).

7. Conclusion

This paper introduces TopoTxR, a novel topological biomarker that
capitalizes on the rich geometric information inherent in structural
MRI to enhance downstream CNN processing. To harness the intrinsic
topological information effectively, we integrate a topology-guided
spatial attention mechanism. Our model combines information from
raw MRIs and topological masks, addressing the sample imbalance
problem in datasets using focal loss. Specifically, we compute 1D
cycles and 2D bubbles from breast DCE-MRIs employing the theory
of persistent homology. These topological structures are then utilized
to guide neural network attention by supervising the generation of
attention maps. Furthermore, we demonstrate the predictive power of
opoTxR in forecasting pCR using treatment-naïve imaging.
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